44 research outputs found

    Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate–Carbon Nanofiller Nanocomposites

    Get PDF
    A series of ethylene vinyl acetate (EVA) nanocomposites using four kinds of EVA with 40, 50, 60, and 70 wt% vinyl acetate (VA) contents and three different carbon-based nanofillers—expanded graphite (EG), multi-walled carbon nanotube (MWCNT), and carbon nanofiber (CNF) have been prepared via solution blending. The influence of the matrix polarity and the nature of nanofillers on the morphology and properties of EVA nanocomposites have been investigated. It is observed that the sample with lowest vinyl acetate content exhibits highest mechanical properties. However, the enhancement in mechanical properties with the incorporation of various nanofillers is the highest for EVA with high VA content. This trend has been followed in both dynamic mechanical properties and thermal conductivity of the nanocomposites. EVA copolymer undergoes a transition from partial to complete amorphousness between 40 and 50 wt% VA content, and this changes the dispersion of the nanofillers. The high VA-containing polymers show more affinity toward fillers due to the large free volume available and allow easy dispersion of nanofillers in the amorphous rubbery phase, as confirmed from the morphological studies. The thermal stability of the nanocomposites is also influenced by the type of nanofiller

    Inhibition, Reinforcement Sensitivity and Temporal Information Processing in ADHD and ADHD+ODD: Evidence of a Separate Entity?

    Get PDF
    This study compared children with ADHD-only, ADHD+ODD and normal controls (age 8–12) on three key neurocognitive functions: response inhibition, reinforcement sensitivity, and temporal information processing. The goal was twofold: (a) to investigate neurocognitive impairments in children with ADHD-only and children with ADHD+ODD, and (b) to test whether ADHD+ODD is a more severe from of ADHD in terms of neurocognitive performance. In Experiment 1, inhibition abilities were measured using the Stop Task. In Experiment 2, reinforcement sensitivity and temporal information processing abilities were measured using a Timing Task with both a reward and penalty condition. Compared to controls, children with ADHD-only demonstrated impaired inhibitory control, showed more time underestimations, and showed performance deterioration in the face of reward and penalty. Children with ADHD+ODD performed in-between children with ADHD-only and controls in terms of inhibitory controls and the tendency to underestimate time, but were more impaired than controls and children with ADHD-only in terms of timing variability. In the face of reward and penalty children with ADHD+ODD improved their performance compared to a neutral condition, in contrast to children with ADHD-only. In the face of reward, the performance improvement in the ADHD+ODD group was disproportionally larger than that of controls. Taken together the findings suggest that, in terms of neurocognitive functioning, comorbid ADHD+ODD is a substantial different entity than ADHD-only

    Persistence of dissolved organic matter explained by molecular changes during its passage through soil

    Get PDF
    Dissolved organic matter affects fundamental biogeochemical processes in the soil such as nutrient cycling and organic matter storage. The current paradigm is that processing of dissolved organic matter converges to recalcitrant molecules (those that resist degradation) of low molecular mass and high molecular diversity through biotic and abiotic processes. Here we demonstrate that the molecular composition and properties of dissolved organic matter continuously change during soil passage and propose that this reflects a continual shifting of its sources. Using ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, we studied the molecular changes of dissolved organic matter from the soil surface to 60 cm depth in 20 temperate grassland communities in soil type Eutric Fluvisol. Applying a semi-quantitative approach, we observed that plant-derived molecules were first broken down into molecules containing a large proportion of low-molecular-mass compounds. These low-molecular-mass compounds became less abundant during soil passage, whereas larger molecules, depleted in plant-related ligno-cellulosic structures, became more abundant. These findings indicate that the small plant-derived molecules were preferentially consumed by microorganisms and transformed into larger microbial-derived molecules. This suggests that dissolved organic matter is not intrinsically recalcitrant but instead persists in soil as a result of simultaneous consumption, transformation and formation

    Coherence and recurrency: maintenance, control and integration in working memory

    Get PDF
    Working memory (WM), including a ‘central executive’, is used to guide behavior by internal goals or intentions. We suggest that WM is best described as a set of three interdependent functions which are implemented in the prefrontal cortex (PFC). These functions are maintenance, control of attention and integration. A model for the maintenance function is presented, and we will argue that this model can be extended to incorporate the other functions as well. Maintenance is the capacity to briefly maintain information in the absence of corresponding input, and even in the face of distracting information. We will argue that maintenance is based on recurrent loops between PFC and posterior parts of the brain, and probably within PFC as well. In these loops information can be held temporarily in an active form. We show that a model based on these structural ideas is capable of maintaining a limited number of neural patterns. Not the size, but the coherence of patterns (i.e., a chunking principle based on synchronous firing of interconnected cell assemblies) determines the maintenance capacity. A mechanism that optimizes coherent pattern segregation, also poses a limit to the number of assemblies (about four) that can concurrently reverberate. Top-down attentional control (in perception, action and memory retrieval) can be modelled by the modulation and re-entry of top-down information to posterior parts of the brain. Hierarchically organized modules in PFC create the possibility for information integration. We argue that large-scale multimodal integration of information creates an ‘episodic buffer’, and may even suffice for implementing a central executive

    Functional Brain Networks Develop from a “Local to Distributed” Organization

    Get PDF
    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites

    Visual search with animal fear-relevant stimuli: A tale of two procedures

    No full text
    The present study assessed preferential attentional processing of animal fear-relevant stimuli in two procedures, Search and Interference tasks, which have been suggested to reflect on attentional capture due to the fear-relevance of the stimuli presented. In the Search task, participants (N = 154) searched fear-relevant (i.e., snakes and spiders) and non fear-relevant (i.e., fish and birds) backgrounds to determine the presence or absence of a deviant animal from the opposite category. In the Interference task, the same participants searched for the presence or absence of a neutral target (a cat) when either a snake, spider or no distracter were embedded amongst backgrounds of other animal stimuli. Replicating previous findings, preferential attentional processing of animal fear-relevant stimuli was evident in both procedures and participants who specifically feared one animal but not the other showed enhanced preferential processing of their feared fear-relevant animal. However, across the entire sample, there was no relationship between self-reported levels of animal fear and preferential processing which may reflect on the fact that substantial preferential attentional processing of fear-relevant animals was evident in the entire sample. Also, preferential attentional processing as assessed in the two tasks was not related. Delayed disengagement from fear-relevant stimuli appeared to underlie performance in the search task but not in the interference task
    corecore