39 research outputs found

    Matrix Metalloproteinases in Cytotoxic Lymphocytes Impact on Tumour Infiltration and Immunomodulation

    Get PDF
    To efficiently combat solid tumours, endogenously or adoptively transferred cytotoxic T cells and natural killer (NK) cells, need to leave the vasculature, traverse the interstitium and ultimately infiltrate the tumour mass. During this locomotion and migration in the three dimensional environment many obstacles need to be overcome, one of which is the possible impediment of the extracellular matrix. The first and obvious one is the sub-endothelial basement membrane but the infiltrating cells will also meet other, both loose and tight, matrix structures that need to be overridden. Matrix metalloproteinases (MMPs) are believed to be one of the most important endoprotease families, with more than 25 members, which together have function on all known matrix components. This review summarizes what is known on synthesis, expression patterns and regulation of MMPs in cytotoxic lymphocytes and their possible role in the process of tumour infiltration. We also discuss different functions of MMPs as well as the possible use of other lymphocyte proteases for matrix degradation

    Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method

    Get PDF
    Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation. The consideration to this realistic data makes cell formation problemvery complex and tedious. It leads to the invention and implementation of highly advanced and complex cell formation methods. In this paper an effort has been made to develop a simple and easy to understand/implement manufacturing cell formation heuristic procedure with considerations to the number of production and manufacturing flexibility-related parameters. The heuristic minimizes inter-cellular movement cost/time. Further, the proposed heuristic is modified for the application of principal component analysis and Taguchi's method. Numerical example is explained to illustrate the approach. A refinement in the results is observed with adoption of principal component analysis and Taguchi's method
    corecore