1,370 research outputs found

    GLEAM v3 : satellite-based land evaporation and root-zone soil moisture

    Get PDF
    The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly revised, aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous version include (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone soil moisture, including a 36-year data set spanning 1980-2015, referred to as v3a (based on satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and soil moisture, which are based on observations from different passive and active C-and L-band microwave sensors (European Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003-2015) and observations from the Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011-2015). Here, these three data sets are described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems. Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against in situ surface soil moisture measurements increase from 0.61 to 0.64 in the case of the v3a data set and the representation of soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are observed for the v3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar to the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil moisture are now openly available at www.GLEAM.eu and may be used for large-scale hydrological applications, climate studies, or research on land-atmosphere feedbacks

    Towards estimating land evaporation at field scales using GLEAM

    Get PDF
    The evaporation of water from land into the atmosphere is a key component of the hydrological cycle. Accurate estimates of this flux are essential for proper water management and irrigation scheduling. However, continuous and qualitative information on land evaporation is currently not available at the required spatio-temporal scales for agricultural applications and regional-scale water management. Here, we apply the Global Land Evaporation Amsterdam Model (GLEAM) at 100 m spatial resolution and daily time steps to provide estimates of land evaporation over The Netherlands, Flanders, and western Germany for the period 2013-2017. By making extensive use of microwave-based geophysical observations, we are able to provide data under all weather conditions. The soil moisture estimates from GLEAM at high resolution compare well with in situ measurements of surface soil moisture, resulting in a median temporal correlation coefficient of 0.76 across 29 sites. Estimates of terrestrial evaporation are also evaluated using in situ eddy-covariance measurements from five sites, and compared to estimates from the coarse-scale GLEAM v3.2b, land evaporation from the Satellite Application Facility on Land Surface Analysis (LSA-SAF), and reference grass evaporation based on Makkink's equation. All datasets compare similarly with in situ measurements and differences in the temporal statistics are small, with correlation coefficients against in situ data ranging from 0.65 to 0.95, depending on the site. Evaporation estimates from GLEAM-HR are typically bounded by the high values of the Makkink evaporation and the low values from LSA-SAF. While GLEAM-HR and LSA-SAF show the highest spatial detail, their geographical patterns diverge strongly due to differences in model assumptions, model parameterizations, and forcing data. The separate consideration of rainfall interception loss by tall vegetation in GLEAM-HR is a key cause of this divergence: while LSA-SAF reports maximum annual evaporation volumes in the Green Heart of The Netherlands, an area dominated by shrubs and grasses, GLEAM-HR shows its maximum in the national parks of the Veluwe and Heuvelrug, both densely-forested regions where rainfall interception loss is a dominant process. The pioneering dataset presented here is unique in that it provides observational-based estimates at high resolution under all weather conditions, and represents a viable alternative to traditional visible and infrared models to retrieve evaporation at field scales

    Restricted Attentional Capacity within but Not between Sensory Modalities: An Individual Differences Approach

    Get PDF
    Background Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional blink (AB). An aspect of the AB that is often ignored is that there are large individual differences in the magnitude of the effect. Here we exploit these individual differences to address a long-standing question: does attention to a visual target come at a cost for attention to an auditory target (and vice versa)? More specifically, the goal of the current study was to investigate a) whether individuals with a large within-modality AB also show a large cross-modal AB, and b) whether individual differences in AB magnitude within different modalities correlate or are completely separate. Methodology/Principal Findings While minimizing differential task difficulty and chances for a task-switch to occur, a significant AB was observed when targets were both presented within the auditory or visual modality, and a positive correlation was found between individual within-modality AB magnitudes. However, neither a cross-modal AB nor a correlation between cross-modal and within-modality AB magnitudes was found. Conclusion/Significance The results provide strong evidence that a major source of attentional restriction must lie in modality-specific sensory systems rather than a central amodal system, effectively settling a long-standing debate. Individuals with a large within-modality AB may be especially committed or focused in their processing of the first target, and to some extent that tendency to focus could cross modalities, reflected in the within-modality correlation. However, what they are focusing (resource allocation, blocking of processing) is strictly within-modality as it only affects the second target on within-modality trials. The findings show that individual differences in AB magnitude can provide important information about the modular structure of human cognition

    Self-Affirmation Improves Problem-Solving under Stress

    Get PDF
    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. © 2013 Creswell et al

    Protein kinase Cδ expression in breast cancer as measured by real-time PCR, western blotting and ELISA

    Get PDF
    The protein kinase C (PKC) family of genes encode serine/threonine kinases that regulate proliferation, apoptosis, cell survival and migration. Multiple isoforms of PKC have been described, one of which is PKCδ. Currently, it is unclear whether PKCδ is involved in promoting or inhibiting cancer formation/progression. The aim of this study was therefore to investigate the expression of PKCδ in human breast cancer and relate its levels to multiple parameters of tumour progression. Protein kinase Cδ expression at the mRNA level was measured using real-time PCR (n=208) and at protein level by both immunoblotting (n=94) and ELISA (n=98). Following immunoblotting, two proteins were identified, migrating with molecular masses of 78 and 160 kDa. The 78 kDa protein is likely to be the mature form of PKCδ but the identity of the 160 kDa form is unknown. Levels of both these proteins correlated weakly but significantly with PKCδ concentrations determined by ELISA (for the 78 kDa form, r=0.444, P<0.005, n=91 and for the 160 kDa form, r=0.237, P=0.023, n=91) and with PKCδ mRNA levels (for the 78 kDa form, r=0.351, P=0.001, n=94 and for the 160 kDa form, r=0.216, P=0.037, n=94). Protein kinase Cδ mRNA expression was significantly higher in oestrogen receptor (ER)-positive compared with ER-negative tumours (P=0.007, Mann–Whitney U-test). Increasing concentrations of PKCδ mRNA were associated with reduced overall patient survival (P=0.004). Our results are consistent with a role for PKCδ in breast cancer progression

    Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B

    Get PDF
    Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone

    High TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as ECM related genes

    Get PDF
    Introduction: The TWIST homolog 1 (TWIST1) is a transcription factor that induces epithelial to mesenchymal transition (EMT), a key process in metastasis. The purpose of this study was to investigate whether TWIST1 expression predicts disease progression in a large breast cancer cohort with long-term clinical follow-up, and to reveal the biology related to TWIST1 mediated disease progression.Methods: TWIST1 mRNA expression level was analyzed by quantitative real-time reverse polymerase chain reaction (RT-PCR) in 1,427 primary breast cancers. In uni- and multivariate analysis using Cox regression, TWIST1 mRNA expression level was associated with metastasis-free survival (MFS), disease-free survival (DFS) and overall survival (OS). Separate analyses in lymph node-negative patients (LNN, n = 778) who did not receive adjuvant systemic therapy, before and after stratification into estrogen receptor (ER)-positive (n = 552) and ER-negative (n = 226) disease, were also performed. The association of TWIST1 mRNA with survival endpoints was assessed using Kaplan-Meier analysis. Using gene expression arrays, genes showing a significant Spearman rank correlation with TWIST1 were used to identify overrepresented Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated biological pathways.Results: Increased mRNA expression level of TWIST1 analyzed as a continuous variable in both uni- and multivariate analysis was associated with shorter MFS in all patients (hazard ratio (HR): 1.17, 95% confidence interval, (95% CI):1.09 to 1.26; and HR: 1.17, 95% CI: 1.08 to 1.26; respectively), in LNN patients (HR: 1.22, 95% CI: 1.09 to 1.36; and HR: 1.21, 95% CI: 1.07 to 1.36; respectively) and in the ER-positive subgroup of LNN patients (HR: 1.34, 95% CI: 1.17 to 1.53; and HR: 1.32, 95% CI: 1.14 to 1.53; respectively). Similarly, high TWIST1 expression was associated with shorter DFS and OS in all patients and in the LNN/ER-positive subgroup. In contrast, no association of TWIST1 mRNA expression with MFS, DFS or OS was observed in ER-negative patients. Genes h
    • …
    corecore