490 research outputs found

    The CAG repeat at the Huntington disease gene in the Portuguese population : insights into its dynamics and to the origin of the mutation

    Get PDF
    Huntington disease (HD) is caused by an expansion of a CAG repeat. This repeat is a dynamic mutation that tends to undergo intergenerational instability. We report the analysis of the CAG repeat in a large population sample (2,000 chromosomes) covering all regions of Portugal, and a haplotype study of (CAG)n and (CCG)n repeats in 140 HD Portuguese families. Intermediate class 2 alleles represented 3.0% of the population; and two expanded alleles (36 and 40 repeats, 0.11%) were found. There was no evidence for geographical clustering of the intermediate or expanded alleles. The Portuguese families showed three different HD founder haplotypes associated with 7-, 9- or 10-CCG repeats, suggesting the possibility of different origins for theHDmutation among this population. The haplotype carrying the 7-CCG repeat was the most frequent, both in normal and in expanded alleles. In general, we propose that three mechanisms, occurring at different times,may lead to the evolution from normal CAGs to full expansion: first, a mutation bias towards larger alleles; then, a stepwise process that could explain the CAGdistributions observed in themore recent haplotypes; and, finally, a pool of intermediate (class 2) alleles more prone to give rise to expanded HD alleles.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/9759/ 2003.Instituto de Genética Médica Jacinto Magalhães

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
    corecore