6,059 research outputs found
Role of domain walls in the abnormal photovoltaic effect in BiFeO3
Recently, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin
films, which resulted in open circuit voltages (V-oc) considerably
larger than the band gap of the material, has generated a revival of the
entire field of photoferroelectrics. Here, via temperature-dependent PV
studies, we prove that the bulk photovoltaic (BPV) effect, which has
been studied in the past for many non-centrosymmetric materials, is at
the origin of the anomalous PV effect in BFO films. Moreover, we show
that irrespective of the measurement geometry, V-oc as high as 50V can
be achieved by controlling the conductivity of domain walls (DW). We
also show that photoconductivity of the DW is markedly higher than in
the bulk of BFO
Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories
We carry out a gauge invariant analysis of certain perturbations of
-branes solutions of low energy string theories. We get generically a
system of second order coupled differential equations, and show that only in
very particular cases it is possible to reduce it to just one differential
equation. Later, we apply it to a multi-parameter, generically singular family
of constant dilaton solutions of non-critical string theories in
dimensions, a generalization of that recently found in arXiv:0709.0471[hep-th].
According to arguments coming from the holographic gauge theory-gravity
correspondence, and at least in some region of the parameters space, we obtain
glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special
emphasis in the scalar metric perturbations not considered previously in the
literature in the non critical setup. We compare our numerical results to those
studied previously and to lattice results, finding qualitative and in some
cases, tuning properly the parameters, quantitative agreement. These results
seem to show some kind of universality of the models, as well as an irrelevance
of the singular character of the solutions. We also develop the analysis for
the T-dual, non trivial dilaton family of solutions, showing perfect agreement
between them.Comment: A new reference added
Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems.
Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems
Quantum Non-demolition Detection of Single Microwave Photons in a Circuit
Thorough control of quantum measurement is key to the development of quantum
information technologies. Many measurements are destructive, removing more
information from the system than they obtain. Quantum non-demolition (QND)
measurements allow repeated measurements that give the same eigenvalue. They
could be used for several quantum information processing tasks such as error
correction, preparation by measurement, and one-way quantum computing.
Achieving QND measurements of photons is especially challenging because the
detector must be completely transparent to the photons while still acquiring
information about them. Recent progress in manipulating microwave photons in
superconducting circuits has increased demand for a QND detector which operates
in the gigahertz frequency range. Here we demonstrate a QND detection scheme
which measures the number of photons inside a high quality-factor microwave
cavity on a chip. This scheme maps a photon number onto a qubit state in a
single-shot via qubit-photon logic gates. We verify the operation of the device
by analyzing the average correlations of repeated measurements, and show that
it is 90% QND. It differs from previously reported detectors because its
sensitivity is strongly selective to chosen photon number states. This scheme
could be used to monitor the state of a photon-based memory in a quantum
computer.Comment: 5 pages, 4 figures, includes supplementary materia
F-Theorem without Supersymmetry
The conjectured F-theorem for three-dimensional field theories states that
the finite part of the free energy on S^3 decreases along RG trajectories and
is stationary at the fixed points. In previous work various successful tests of
this proposal were carried out for theories with {\cal N}=2 supersymmetry. In
this paper we perform more general tests that do not rely on supersymmetry. We
study perturbatively the RG flows produced by weakly relevant operators and
show that the free energy decreases monotonically. We also consider large N
field theories perturbed by relevant double trace operators, free massive field
theories, and some Chern-Simons gauge theories. In all cases the free energy in
the IR is smaller than in the UV, consistent with the F-theorem. We discuss
other odd-dimensional Euclidean theories on S^d and provide evidence that
(-1)^{(d-1)/2} \log |Z| decreases along RG flow; in the particular case d=1
this is the well-known g-theorem.Comment: 34 pages, 2 figures; v2 refs added, minor improvements; v3 refs
added, improved section 4.3; v4 minor improvement
Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds
The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio
Leaf venation, as a resistor, to optimize a switchable IR absorber
Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature’s vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber
Dynamics of direct inter-pack encounters in endangered African wild dogs
Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging
- …
