514 research outputs found

    Biomarkers and in vitro strategies for nephrotoxicity and renal disease assessment

    Get PDF
    Acute kidney injury (AKI) is a global public health concern, impacting nearly 13.3 million patients and resulting in three million deaths per year. Chronic kidney disease has increased by 135% since 1990, representing the pathology with the fastest growth rate worldwide. The annual costs of dialysis and kidney transplants range between US35,000andUS35,000 and US100,000 per patient. Despite its great impact, kidney disease has remained mostly asymptomatic for many years. AKI continues to be a major, unmet medical condition for which there are no pharmacological treatments available, while animal models are limited to provide direction for therapeutic translation into humans. Currently, serum creatinine is the standard biomarker to identify nephrotoxicity; however, it is a late stage biomarker. Hence, there is a pressing need to study in vitro biomarkers for the assessment of nephrotoxicity in order to develop new and safer drugs. Understanding of the mechanisms by which molecules produce nephrotoxicity is vital in order to both prevent adversity and treat kidney injury. In this review, we address new technologies and models that may be used to identify earlier biomarkers and pathways involved in nephrotoxicity, such as cell culture, omics, bioinformatics platform, CRISPR/Cas9 genome-editing, in silico, organoids and 3D bioprinting, considering AOP

    Twisted mass chiral perturbation theory for 2+1+1 quark flavours

    Full text link
    We present results for the masses of pseudoscalar mesons in twisted mass lattice QCD with a degenerate doublet of u and d quarks and a non-degenerate doublet of s and c quarks in the framework of next-to-leading order chiral perturbation theory, including lattice effects up to O(a^2). The masses depend on the two twist angles for the light and heavy sectors. For maximal twist in both sectors, O(a)-improvement is explicitly exhibited. The mixing of flavour-neutral mesons is also discussed, and results in the literature for the case of degenerate s and c quarks are corrected.Comment: LaTeX2e, 12 pages, corrected typo

    Direct entropy determination and application to artificial spin ice

    Full text link
    From thermodynamic origins, the concept of entropy has expanded to a range of statistical measures of uncertainty, which may still be thermodynamically significant. However, laboratory measurements of entropy continue to rely on direct measurements of heat. New technologies that can map out myriads of microscopic degrees of freedom suggest direct determination of configurational entropy by counting in systems where it is thermodynamically inaccessible, such as granular and colloidal materials, proteins and lithographically fabricated nanometre-scale arrays. Here, we demonstrate a conditional-probability technique to calculate entropy densities of translation-invariant states on lattices using limited configuration data on small clusters, and apply it to arrays of interacting nanometre-scale magnetic islands (artificial spin ice). Models for statistically disordered systems can be assessed by applying the method to relative entropy densities. For artificial spin ice, this analysis shows that nearest-neighbour correlations drive longer-range ones.Comment: 10 page

    Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Get PDF
    Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. CFS were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Our results support the hypothesis that fragile sites serve a function; we propose that fragility is linked to a coordinated regulation of fragile genes expression.Comment: 18 pages, accepted for publication in BMC Bioinformatic

    Singular values of the Dirac operator in dense QCD-like theories

    Full text link
    We study the singular values of the Dirac operator in dense QCD-like theories at zero temperature. The Dirac singular values are real and nonnegative at any nonzero quark density. The scale of their spectrum is set by the diquark condensate, in contrast to the complex Dirac eigenvalues whose scale is set by the chiral condensate at low density and by the BCS gap at high density. We identify three different low-energy effective theories with diquark sources applicable at low, intermediate, and high density, together with their overlapping domains of validity. We derive a number of exact formulas for the Dirac singular values, including Banks-Casher-type relations for the diquark condensate, Smilga-Stern-type relations for the slope of the singular value density, and Leutwyler-Smilga-type sum rules for the inverse singular values. We construct random matrix theories and determine the form of the microscopic spectral correlation functions of the singular values for all nonzero quark densities. We also derive a rigorous index theorem for non-Hermitian Dirac operators. Our results can in principle be tested in lattice simulations.Comment: 3 references added, version published in JHE

    Nodular Worm Infection in Wild Chimpanzees in Western Uganda: A Risk for Human Health?

    Get PDF
    This study focused on Oeosophagostomum sp., and more especially on O. bifurcum, as a parasite that can be lethal to humans and is widespread among humans and monkeys in endemic regions, but has not yet been documented in apes. Its epidemiology and the role played by non-human primates in its transmission are still poorly understood. O. stephanostomum was the only species diagnosed so far in chimpanzees. Until recently, O. bifurcum was assumed to have a high zoonotic potential, but recent findings tend to demonstrate that O. bifurcum of non-human primates and humans might be genetically distinct. As the closest relative to human beings, and a species living in spatial proximity to humans in the field site studied, Pan troglodytes is thus an interesting host to investigate. Recently, a role for chimpanzees in the emergence of HIV and malaria in humans has been documented. In the framework of our long-term health monitoring of wild chimpanzees from Kibale National Park in Western Uganda, we analysed 311 samples of faeces. Coproscopy revealed that high-ranking males are more infected than other individuals. These chimpanzees are also the more frequent crop-raiders. Results from PCR assays conducted on larvae and dried faeces also revealed that O. stephanostomum as well as O. bifurcum are infecting chimpanzees, both species co-existing in the same individuals. Because contacts between humans and great apes are increasing with ecotourism and forest fragmentation in areas of high population density, this paper emphasizes that the presence of potential zoonotic parasites should be viewed as a major concern for public health. Investigations of the parasite status of people living around the park or working inside as well as sympatric non-human primates should be planned, and further research might reveal this as a promising aspect of efforts to reinforce measures against crop-raiding

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Acute febrile illness is associated with Rickettsia spp infection in dogs

    Get PDF
    BACKGROUND: Rickettsia conorii is transmitted by Rhipicephalus sanguineus ticks and causes Mediterranean Spotted Fever (MSF) in humans. Although dogs are considered the natural host of the vector, the clinical and epidemiological significance of R. conorii infection in dogs remains unclear. The aim of this prospective study was to investigate whether Rickettsia infection causes febrile illness in dogs living in areas endemic for human MSF. METHODS: Dogs from southern Italy with acute fever (n = 99) were compared with case–control dogs with normal body temperatures (n = 72). Serology and real-time PCR were performed for Rickettsia spp., Ehrlichia canis, Anaplasma phagocytophilum/A. platys and Leishmania infantum. Conventional PCR was performed for Babesia spp. and Hepatozoon spp. Acute and convalescent antibodies to R. conorii, E. canis and A. phagocytophilum were determined. RESULTS: The seroprevalence rates at first visit for R. conorii, E. canis, A. phagocytophilum and L. infantum were 44.8%, 48.5%, 37.8% and 17.6%, respectively. The seroconversion rates for R. conorii, E. canis and A. phagocytophilum were 20.7%, 14.3% and 8.8%, respectively. The molecular positive rates at first visit for Rickettsia spp., E. canis, A. phagocytophilum, A. platys, L. infantum, Babesia spp. and Hepatozoon spp. were 1.8%, 4.1%, 0%, 2.3%, 11.1%, 2.3% and 0.6%, respectively. Positive PCR for E. canis (7%), Rickettsia spp. (3%), Babesia spp. (4.0%) and Hepatozoon spp. (1.0%) were found only in febrile dogs. The DNA sequences obtained from Rickettsia and Babesia PCRs positive samples were 100% identical to the R. conorii and Babesia vogeli sequences in GenBank®, respectively. Febrile illness was statistically associated with acute and convalescent positive R. conorii antibodies, seroconversion to R. conorii, E. canis positive PCR, and positivity to any tick pathogen PCRs. Fourteen febrile dogs (31.8%) were diagnosed with Rickettsia spp. infection based on seroconversion and/or PCR while only six afebrile dogs (12.5%) seroconverted (P = 0.0248). The most common clinical findings of dogs with Rickettsia infection diagnosed by seroconversion and/or PCR were fever, myalgia, lameness, elevation of C-reactive protein, thrombocytopenia and hypoalbuminemia. CONCLUSIONS: This study demonstrates acute febrile illness associated with Rickettsia infection in dogs living in endemic areas of human MSF based on seroconversion alone or in combination with PCR

    Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease

    Get PDF
    A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis
    corecore