9 research outputs found

    Behavioural indicators of welfare in farmed fish

    Get PDF
    Behaviour represents a reaction to the environment as fish perceive it and is therefore a key element of fish welfare. This review summarises the main findings on how behavioural changes have been used to assess welfare in farmed fish, using both functional and feeling-based approaches. Changes in foraging behaviour, ventilatory activity, aggression, individual and group swimming behaviour, stereotypic and abnormal behaviour have been linked with acute and chronic stressors in aquaculture and can therefore be regarded as likely indicators of poor welfare. On the contrary, measurements of exploratory behaviour, feed anticipatory activity and reward-related operant behaviour are beginning to be considered as indicators of positive emotions and welfare in fish. Despite the lack of scientific agreement about the existence of sentience in fish, the possibility that they are capable of both positive and negative emotions may contribute to the development of new strategies (e. g. environmental enrichment) to promote good welfare. Numerous studies that use behavioural indicators of welfare show that behavioural changes can be interpreted as either good or poor welfare depending on the fish species. It is therefore essential to understand the species-specific biology before drawing any conclusions in relation to welfare. In addition, different individuals within the same species may exhibit divergent coping strategies towards stressors, and what is tolerated by some individuals may be detrimental to others. Therefore, the assessment of welfare in a few individuals may not represent the average welfare of a group and vice versa. This underlines the need to develop on-farm, operational behavioural welfare indicators that can be easily used to assess not only the individual welfare but also the welfare of the whole group (e. g. spatial distribution). With the ongoing development of video technology and image processing, the on-farm surveillance of behaviour may in the near future represent a low-cost, noninvasive tool to assess the welfare of farmed fish.Fundação para a Ciência e Tecnologia, Portugal [SFRH/BPD/42015/2007]info:eu-repo/semantics/publishedVersio

    Behavioral and respiratory responses to stressors in multiple populations of three-spined sticklebacks that differ in predation pressure

    No full text
    Individual animals of the same species inhabiting environments which differ in the frequency and magnitude of stressors often exhibit different physiological and behavioral responses to stressors. Here, we compare the respiratory response to confinement stress, and behavioral responses to ecologically relevant challenges among sticklebacks from 11 different populations varying in predation pressure. We found that sticklebacks from high predation populations breathed faster in response to confinement stress and were, on an average, more behaviorally responsive to a pike behind glass compared with sticklebacks from low predation populations. These patterns differ from the results of studies on other species, highlighting the need for a conceptual framework to understand the proximate and ultimate factors shaping variable responses to stressors over developmental and evolutionary time. Moreover, physiological and behavioral responses were integrated with each other, both at the individual and population levels. In general, fish that were more aggressive and bold in the presence of a predator breathed faster, independent of body size. These results are consistent with the growing body of evidence that individuals differ in a suite of physiological and behavioral mechanisms for coping with challenges in the environment

    The function of zebra stripes

    No full text
    Despite over a century of interest, the function of zebra stripes has never been examined systematically. Here we match variation in striping of equid species and subspecies to geographic range overlap of environmental variables in multifactor models controlling for phylogeny to simultaneously test the five major explanations for this infamous colouration. For subspecies, there are significant associations between our proxy for tabanid biting fly annoyance and most striping measures (facial and neck stripe number, flank and rump striping, leg stripe intensity and shadow striping), and between belly stripe number and tsetse fly distribution, several of which are replicated at the species level. Conversely, there is no consistent support for camouflage, predator avoidance, heat management or social interaction hypotheses. Susceptibility to ectoparasite attack is discussed in relation to short coat hair, disease transmission and blood loss. A solution to the riddle of zebra stripes, discussed by Wallace and Darwin, is at hand.</p

    The Analysis of Animal Communication

    No full text
    corecore