66 research outputs found

    Combustion in thermonuclear supernova explosions

    Full text link
    Type Ia supernovae are associated with thermonuclear explosions of white dwarf stars. Combustion processes convert material in nuclear reactions and release the energy required to explode the stars. At the same time, they produce the radioactive species that power radiation and give rise to the formation of the observables. Therefore, the physical mechanism of the combustion processes, as reviewed here, is the key to understand these astrophysical events. Theory establishes two distinct modes of propagation for combustion fronts: subsonic deflagrations and supersonic detonations. Both are assumed to play an important role in thermonuclear supernovae. The physical nature and theoretical models of deflagrations and detonations are discussed together with numerical implementations. A particular challenge arises due to the wide range of spatial scales involved in these phenomena. Neither the combustion waves nor their interaction with fluid flow and instabilities can be directly resolved in simulations. Substantial modeling effort is required to consistently capture such effects and the corresponding techniques are discussed in detail. They form the basis of modern multidimensional hydrodynamical simulations of thermonuclear supernova explosions. The problem of deflagration-to-detonation transitions in thermonuclear supernova explosions is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 24 pages, 4 figure

    Successful treatment of fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecthyma gangrenosum (EG) manifests as a skin lesion affecting patients suffering extreme neutropenia and is commonly associated with <it>Pseudomonas aeruginosa </it>in immunocompromised patients. Leukocyte adhesion deficiency I (LAD I) which count among primary immunodeficiency syndromes of the innate immunity, is an autosomal recessive disorder characterized in its severe phenotype by a complete defect in CD18 expression on neutrophils, delayed cord separation, chronic skin ulcers mainly due to recurrent bacterial and fungal infections, leucocytosis with high numbers of circulating neutrophils and an accumulation of abnormally low number of neutrophils at sites of infection.</p> <p>Case Presentation</p> <p>We report at our knowledge the first case of a child affected by LAD-1, who experienced during her disease course a multi-bacterial and fungal EG lesion caused by <it>fusarium solani</it>. Despite targeted antibiotics and anti-fungi therapy, the lesion extended for as long as 18 months and only massive granulocytes pockets transfusions in association with G-CSF had the capacity to cure this lesion.</p> <p>Conclusion</p> <p>We propose that granulocytes pockets transfusions will be beneficial to heal EG especially in severely immunocompromised patients.</p

    Allergic proctocolitis refractory to maternal hypoallergenic diet in exclusively breast-fed infants: a clinical observation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic proctocolitis (APC) in exclusively breast-fed infants is caused by food proteins, deriving from maternal diet, transferred through lactation. In most cases a maternal cow milk-free diet leads to a prompt resolution of rectal bleeding, while in some patients a multiple food allergy can occur. The aim of this study was to assess whether the atopy patch test (APT) could be helpful to identify this subgroup of patients requiring to discontinue breast-feeding due to polisensitization. Additionally, we assessed the efficacy of an amino acid-based formula (AAF) when multiple food allergy is suspected. amino acid-based formula</p> <p>Methods</p> <p>We have prospectively enrolled 14 exclusively breast-fed infants with APC refractory to maternal allergen avoidance. The diagnosis was confirmed by endoscopy with biopsies. Skin prick tests and serum specific IgE for common foods, together with APTs for common foods plus breast milk, were performed. After a 1 month therapy of an AAF all patients underwent a follow-up rectosigmoidoscopy.</p> <p>Results</p> <p>Prick tests and serum specific IgE were negative. APTs were positive in 100% infants, with a multiple positivity in 50%. Sensitization was found for breast milk in 100%, cow's milk (50%), soy (28%), egg (21%), rice (14%), wheat (7%). Follow-up rectosigmoidoscopy confirmed the remission of APC in all infants.</p> <p>Conclusions</p> <p>These data suggest that APT might become a useful tool to identify subgroups of infants with multiple gastrointestinal food allergy involving a delayed immunogenic mechanism, with the aim to avoid unnecessary maternal dietary restrictions before discontinuing breast-feeding.</p

    Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner

    Get PDF
    Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf) of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low) flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Effectiveness of a transdiagnostic internet-based protocol for the treatment of emotional disorders versus treatment as usual in specialized care: study protocol for a randomized controlled trial

    Full text link
    corecore