1,045 research outputs found
Composite GUTs: models and expectations at the LHC
We investigate grand unified theories (GUTs) in scenarios where electroweak
(EW) symmetry breaking is triggered by a light composite Higgs, arising as a
Nambu-Goldstone boson from a strongly interacting sector. The evolution of the
standard model (SM) gauge couplings can be predicted at leading order, if the
global symmetry of the composite sector is a simple group G that contains the
SM gauge group. It was noticed that, if the right-handed top quark is also
composite, precision gauge unification can be achieved. We build minimal
consistent models for a composite sector with these properties, thus
demonstrating how composite GUTs may represent an alternative to supersymmetric
GUTs. Taking into account the new contributions to the EW precision parameters,
we compute the Higgs effective potential and prove that it realizes
consistently EW symmetry breaking with little fine-tuning. The G group
structure and the requirement of proton stability determine the nature of the
light composite states accompanying the Higgs and the top quark: a coloured
triplet scalar and several vector-like fermions with exotic quantum numbers. We
analyse the signatures of these composite partners at hadron colliders:
distinctive final states contain multiple top and bottom quarks, either alone
or accompanied by a heavy stable charged particle, or by missing transverse
energy.Comment: 55 pages, 13 figures, final version to be published in JHE
Monoidal computer III: A coalgebraic view of computability and complexity
Monoidal computer is a categorical model of intensional computation, where
many different programs correspond to the same input-output behavior. The
upshot of yet another model of computation is that a categorical formalism
should provide a much needed high level language for theory of computation,
flexible enough to allow abstracting away the low level implementation details
when they are irrelevant, or taking them into account when they are genuinely
needed. A salient feature of the approach through monoidal categories is the
formal graphical language of string diagrams, which supports visual reasoning
about programs and computations.
In the present paper, we provide a coalgebraic characterization of monoidal
computer. It turns out that the availability of interpreters and specializers,
that make a monoidal category into a monoidal computer, is equivalent with the
existence of a *universal state space*, that carries a weakly final state
machine for any pair of input and output types. Being able to program state
machines in monoidal computers allows us to represent Turing machines, to
capture their execution, count their steps, as well as, e.g., the memory cells
that they use. The coalgebraic view of monoidal computer thus provides a
convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi
A slice of AdS_5 as the large N limit of Seiberg duality
A slice of AdS_5 is used to provide a 5D gravitational description of 4D
strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory
in the conformal window at large N is described by the 5D bulk, while its
weakly coupled (magnetic) dual is confined to the IR brane. This framework can
be used to construct an N = 1 MSSM on the IR brane, reminiscent of the original
Randall-Sundrum model. In addition, we use our framework to study
strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces.
This leads to a unified scenario that connects the extra-ordinary gauge
mediation limit to the gaugino mediation limit in warped space.Comment: 47 Pages, axodraw4j.st
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals
If all strongly interacting sparticles (the squarks and the gluinos) in an
unconstrained minimal supersymmetric standard model (MSSM) are heavier than the
corresponding mass lower limits in the minimal supergravity (mSUGRA) model,
obtained by the current LHC experiments, then the existing data allow a variety
of electroweak (EW) sectors with light sparticles yielding dark matter (DM)
relic density allowed by the WMAP data. Some of the sparticles may lie just
above the existing lower bounds from LEP and lead to many novel DM producing
mechanisms not common in mSUGRA. This is illustrated by revisiting the above
squark-gluino mass limits obtained by the ATLAS Collaboration, with an
unconstrained EW sector with masses not correlated with the strong sector.
Using their selection criteria and the corresponding cross section limits, we
find at the generator level using Pythia, that the changes in the mass limits,
if any, are by at most 10-12% in most scenarios. In some cases, however, the
relaxation of the gluino mass limits are larger (). If a subset of
the strongly interacting sparticles in an unconstrained MSSM are within the
reach of the LHC, then signals sensitive to the EW sector may be obtained. This
is illustrated by simulating the \etslash, , and \etslash signals in i) the light stop scenario and ii) the light
stop-gluino scenario with various light EW sectors allowed by the WMAP data.
Some of the more general models may be realized with non-universal scalar and
gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to
appear in JHE
Neutron Majorana mass from exotic instantons
We show how a Majorana mass for the Neutron could result from
non-perturbative quantum gravity effects peculiar to string theory. In
particular, "exotic instantons" in un-oriented string compactifications with
D-branes extending the (supersymmetric) standard model could indirectly produce
an effective operator delta{m} n^t n+h.c. In a specific model with an extra
vector-like pair of `quarks', acquiring a large mass proportional to the string
mass scale (exponentially suppressed by a function of the string moduli
fields), delta{m} can turn out to be as low as 10^{-24}-10^{-25} eV. The
induced neutron-antineutron oscillations could take place with a time scale
tau_{n\bar{n}} > 10^8 s, that could be tested by the next generation of
experiments. On the other hand, proton decay and FCNC's are automatically
strongly suppressed and are compatible with the current experimental limits.
Depending on the number of brane intersections, the model may also lead to the
generation of Majorana masses for R-handed neutrini. Our proposal could also
suggest neutron-neutralino or neutron-axino oscillations, with implications in
UCN, Dark Matter Direct Detection, UHECR and Neutron-Antineutron oscillations.
This suggests to improve the limits on neutron-antineutron oscillations, as a
possible test of string theory and quantum gravity.Comment: 35 pages, 11 figures. More comments on neutron-neutralino mixin
Preferences for menu labelling formats of young adults in Brazil and in the United Kingdom
Objective This pilot study was aimed at exploring preferences of young adults in two different contexts on restaurant menu labelling formats. Methods Five focus groups were conducted with 36 participants, two focus groups with 11 participants in Brazil and three focus groups with 25 in the United Kingdom. Themes originating from the content analysis of the transcriptions were organised around four possible menu labelling formats: 1) numerical information on calories; 2) numerical information on calories and nutrients; 3) traffic light system plus Guideline Daily Amounts; 4) food information with ingredients list plus highlighted symbols. Results In both countries, participants preferred the ingredients list plus symbols format, considered more comprehensive and useful to make an informed food choice. Organic food and vegetarian symbols were the ones considered most important to appear on restaurant menu labels with ingredients list. However, most participants in Brazil and in the United Kingdom rejected the information restricted to calories and calories plus nutrients formats, saying that these would not influence their own choices. Conclusion This is the first multicultural qualitative study exploring preferences of people living in different countries with different eating habits, but where menu labelling is voluntary. Results evidenced similarities in participants' likes and dislikes for menu labelling formats in these two different contexts. Discussions showed participants in both countries prefer qualitative information than numerical information, suggesting that ingredients list and symbols provide information that people want to see on the menu
Results from PAMELA, ATIC and FERMI : Pulsars or Dark Matter ?
It is well known that the dark matter dominates the dynamics of galaxies and
clusters of galaxies. Its constituents remain a mystery despite an assiduous
search for them over the past three decades. Recent results from the
satellite-based PAMELA experiment detect an excess in the positron fraction at
energies between 10-100 GeV in the secondary cosmic ray spectrum. Other
experiments namely ATIC, HESS and FERMI show an excess in the total electron
(\ps + \el) spectrum for energies greater 100 GeV. These excesses in the
positron fraction as well as the electron spectrum could arise in local
astrophysical processes like pulsars, or can be attributed to the annihilation
of the dark matter particles. The second possibility gives clues to the
possible candidates for the dark matter in galaxies and other astrophysical
systems. In this article, we give a report of these exciting developments.Comment: 27 Pages, extensively revised and significantly extended, to appear
in Pramana as topical revie
- …
