288 research outputs found

    What is new in pediatric cardiac imaging?

    Get PDF
    Cardiac imaging has had significant influence on the science and practice of pediatric cardiology. Especially the development and improvements made in noninasive imaging techniques, like echocardiography and cardiac magnetic resonance imaging (MRI), have been extremely important. Technical advancements in the field of medical imaging are quickly being made. This review will focus on some of the important evolutions in pediatric cardiac imaging. Techniques such as intracardiac echocardiography, 3D echocardiography, and tissue Doppler imaging are relatively new echocardiographic techniques, which further optimize the anatomical and functional aspects of congenital heart disease. Also, the current standing of cardiac MRI and cardiac computerized tomography will be discussed. Finally, the recent European efforts to organize training and accreditation in pediatric echocardiography are highlighted

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data

    Get PDF
    Recently, a novel approach has been developed to study gene expression in single cells with high time resolution using RNA Fluorescent In Situ Hybridization (FISH). The technique allows individual mRNAs to be counted with high accuracy in wild-type cells, but requires cells to be fixed; thus, each cell provides only a “snapshot” of gene expression. Here we show how and when RNA FISH data on pairs of genes can be used to reconstruct real-time dynamics from a collection of such snapshots. Using maximum-likelihood parameter estimation on synthetically generated, noisy FISH data, we show that dynamical programs of gene expression, such as cycles (e.g., the cell cycle) or switches between discrete states, can be accurately reconstructed. In the limit that mRNAs are produced in short-lived bursts, binary thresholding of the FISH data provides a robust way of reconstructing dynamics. In this regime, prior knowledge of the type of dynamics – cycle versus switch – is generally required and additional constraints, e.g., from triplet FISH measurements, may also be needed to fully constrain all parameters. As a demonstration, we apply the thresholding method to RNA FISH data obtained from single, unsynchronized cells of Saccharomyces cerevisiae. Our results support the existence of metabolic cycles and provide an estimate of global gene-expression noise. The approach to FISH data presented here can be applied in general to reconstruct dynamics from snapshots of pairs of correlated quantities including, for example, protein concentrations obtained from immunofluorescence assays

    Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy

    Get PDF
    BACKGROUND: Oxidative stress could play a role in pathogenesis of hepatitis C virus (HCV) infection. The aim of our study is to determine oxidant/antioxidant status of patients with chronic hepatitis C (CHC), and the effect of pegylated interferon alfa-2b plus ribavirin combination therapy on oxidative stress. METHODS: Nineteen patients with chronic HCV infection and 28 healthy controls were included in the study. In control and patient groups, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, erythrocyte malondialdehyde (MDA) levels, erythrocyte CuZn-superoxide dismutase (SOD), erythrocyte glutathione peroxidase (GSH-Px) activities were measured. After pegylated interferon alfa-2b and ribavirin combination therapy for 48 weeks, these parameters were measured again in the patient group. RESULTS: Serum MDA levels increased significantly in CHC patients (n:19), before the treatment when compared with healthy subjects (n:28) 9.28 ± 1.61, 4.20 ± 1.47 nmol/ml, p < 0.001 respectively. MDA concentration decreased significantly (p < 0.001) after the treatment as well as ALT, AST activity, in erythrocytes of these patients. Average antioxidant enzymes (superoxide dismutase and glutathione peroxidase) were significantly lower in erythrocytes of patients with CHC before treatment compared with the control group (both, p < 0.001). Chronic Hepatitis C patients after pegylated interferon alfa-2b and ribavirin therapy showed values of SOD, GSH-Px were significantly higher than pretreatment levels (both, p < 0.001). CONCLUSION: Our results show that patients with chronic HCV infection are under the influence of oxidative stress associated with lower levels of antioxidant enzymes. These impairments return to level of healthy controls after pegylated interferon alfa-2b plus ribavirin combination therapy of CHC patients. Although interferon and ribavirin are not antioxidants, their antiviral capacity might reduce viral load, and inflammation, and perhaps through this mechanism might reduce virus-induced oxidative stress

    Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait

    Get PDF
    The genetic control of common traits is rarely deterministic, with many genes contributing only to the chance of developing a given phenotype. This incomplete penetrance is poorly understood and is usually attributed to interactions between genes or interactions between genes and environmental conditions. Because many traits such as cancer can emerge from rare events happening in one or very few cells, we speculate an alternative and complementary possibility where some genotypes could facilitate these events by increasing stochastic cell-to-cell variations (or ‘noise’). As a very first step towards investigating this possibility, we studied how natural genetic variation influences the level of noise in the expression of a single gene using the yeast S. cerevisiae as a model system. Reproducible differences in noise were observed between divergent genetic backgrounds. We found that noise was highly heritable and placed under a complex genetic control. Scanning the genome, we mapped three Quantitative Trait Loci (QTL) of noise, one locus being explained by an increase in noise when transcriptional elongation was impaired. Our results suggest that the level of stochasticity in particular molecular regulations may differ between multicellular individuals depending on their genotypic background. The complex genetic architecture of noise buffering couples genetic to non-genetic robustness and provides a molecular basis to the probabilistic nature of complex traits

    Becoming original: effects of strategy instruction

    Get PDF
    Visual arts education focuses on creating original visual art products. A means to improve originality is enhancement of divergent thinking, indicated by fluency, flexibility and originality of ideas. In regular arts lessons, divergent thinking is mostly promoted through brainstorming. In a previous study, we found positive effects of an explicit instruction of metacognition on fluency and flexibility in terms of the generation of ideas, but not on the originality of ideas. Therefore, we redesigned the instruction with a focus on building up knowledge about creative generation strategies by adding more complex types of association, and adding generation through combination and abstraction. In the present study, we examined the effects of this intervention by comparing it with regular brainstorming instruction. In a pretest-posttest control group design, secondary school students in the comparison condition received the brainstorm lesson and students in the experimental condition received the newly developed instruction lesson. To validate the effects, we replicated this study with a second cohort. The results showed that in both cohorts the strategy instruction of 50 min had positive effects on students' fluency, flexibility and originality. This study implies that instructional support in building up knowledge about creative generation strategies may improve students' creative processes in visual arts education

    Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks

    Get PDF
    Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry

    Consequences of Eukaryotic Enhancer Architecture for Gene Expression Dynamics, Development, and Fitness

    Get PDF
    The regulatory logic of time- and tissue-specific gene expression has mostly been dissected in the context of the smallest DNA fragments that, when isolated, recapitulate native expression in reporter assays. It is not known if the genomic sequences surrounding such fragments, often evolutionarily conserved, have any biological function or not. Using an enhancer of the even-skipped gene of Drosophila as a model, we investigate the functional significance of the genomic sequences surrounding empirically identified enhancers. A 480 bp long “minimal stripe element” is able to drive even-skipped expression in the second of seven stripes but is embedded in a larger region of 800 bp containing evolutionarily conserved binding sites for required transcription factors. To assess the overall fitness contribution made by these binding sites in the native genomic context, we employed a gene-replacement strategy in which whole-locus transgenes, capable of rescuing even-skipped- lethality to adulthood, were substituted for the native gene. The molecular phenotypes were characterized by tagging Even-skipped with a fluorescent protein and monitoring gene expression dynamics in living embryos. We used recombineering to excise the sequences surrounding the minimal enhancer and site-specific transgenesis to create co-isogenic strains differing only in their stripe 2 sequences. Remarkably, the flanking sequences were dispensable for viability, proving the sufficiency of the minimal element for biological function under normal conditions. These sequences are required for robustness to genetic and environmental perturbation instead. The mutant enhancers had measurable sex- and dose-dependent effects on viability. At the molecular level, the mutants showed a destabilization of stripe placement and improper activation of downstream genes. Finally, we demonstrate through live measurements that the peripheral sequences are required for temperature compensation. These results imply that seemingly redundant regulatory sequences beyond the minimal enhancer are necessary for robust gene expression and that “robustness” itself must be an evolved characteristic of the wild-type enhancer
    corecore