224 research outputs found

    Cardiogenic shock following administration of propofol and fentanyl in a healthy woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cardiogenic shock is very uncommon in healthy people. The differential diagnosis for patients with acute heart failure in previously healthy hearts includes acute myocardial infarction and myocarditis. However, many drugs can also depress myocardial function. Propofol and fentanyl are frequently used during different medical procedures. The cardiovascular depressive effect of both drugs has been well established, but the development of cardiogenic shock is very rare when these agents are used.</p> <p>Case presentation</p> <p>After a minor surgical intervention, a 32-year-old Caucasian woman with no significant medical history went into sudden hemodynamic deterioration due to acute heart failure. An urgent echocardiogram showed severe biventricular dysfunction and an estimated left ventricular ejection fraction of 20%. Extracorporeal life support and mechanical ventilation were required. Five days later her ventricular function had fully recovered, which allowed the progressive withdrawal of medical treatment. Prior to her hospital discharge, cardiac MRI showed neither edema nor pathological deposits on the delayed contrast enhancement sequences. At her six-month follow-up examination, the patient was asymptomatic and did not require treatment.</p> <p>Conclusion</p> <p>Although there are many causes of cardiogenic shock, the presence of abrupt hemodynamic deterioration and the absence of a clear cause could be related to the use of propofol and fentanyl.</p

    Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies

    Get PDF
    &lt;p&gt;Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.&lt;/p&gt; &lt;p&gt;Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.&lt;/p&gt; &lt;p&gt;Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p&#60;5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.&lt;/p&gt; &lt;p&gt;Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.&lt;/p&gt

    ILK Induces Cardiomyogenesis in the Human Heart

    Get PDF
    Integrin-linked kinase (ILK) is a widely conserved serine/threonine kinase that regulates diverse signal transduction pathways implicated in cardiac hypertrophy and contractility. In this study we explored whether experimental overexpression of ILK would up-regulate morphogenesis in the human fetal heart.Primary cultures of human fetal myocardial cells (19-22 weeks gestation) yielded scattered aggregates of cardioblasts positive for the early cardiac lineage marker nk × 2.5 and containing nascent sarcomeres. Cardiac cells in colonies uniformly expressed the gap junction protein connexin 43 (C × 43) and displayed a spectrum of differentiation with only a subset of cells exhibiting the late cardiomyogenic marker troponin T (cTnT) and evidence of electrical excitability. Adenovirus-mediated overexpression of ILK potently increased the number of new aggregates of primitive cardioblasts (p<0.001). The number of cardioblast colonies was significantly decreased (p<0.05) when ILK expression was knocked down with ILK targeted siRNA. Interestingly, overexpression of the activation resistant ILK mutant (ILK(R211A)) resulted in much greater increase in the number of new cell aggregates as compared to overexpression of wild-type ILK (ILK(WT)). The cardiomyogenic effects of ILK(R211A) and ILK(WT) were accompanied by concurrent activation of β-catenin (p<0.001) and increase expression of progenitor cell marker islet-1, which was also observed in lysates of transgenic mice with cardiac-specific over-expression of ILK(R211A) and ILK(WT). Finally, endogenous ILK expression was shown to increase in concert with those of cardiomyogenic markers during directed cardiomyogenic differentiation in human embryonic stem cells (hESCs).In the human fetal heart ILK activation is instructive to the specification of mesodermal precursor cells towards a cardiomyogenic lineage. Induction of cardiomyogenesis by ILK overexpression bypasses the requirement of proximal PI3K activation for transduction of growth factor- and β1-integrin-mediated differentiation signals. Altogether, our data indicate that ILK represents a novel regulatory checkpoint during human cardiomyogenesis

    Correlation of umbilical cord blood haematopoietic stem and progenitor cell levels with birth weight: implications for a prenatal influence on cancer risk

    Get PDF
    We examined the relation with birth weight and umbilical cord blood concentrations of haematopoietic stem and progenitor populations in 288 singleton infants. Across the whole range of birth weight, there was a positive relation between birth weight and CD34+CD38− cells, with each 500 g increase in birth weight being associated with a 15.5% higher (95% confidence interval: 1.6–31.3%) cell concentration. CD34+ and CD34+c-kit+ cells had J-shaped relations and CFU-GM cells had a U-shaped relation with birth weight. Among newborns with ⩾3000 g birth weights, concentrations of these cells increased with birth weight, while those below 3000 g had higher stem cell concentrations than the reference category of 3000–3499 g. Adjustment for cord blood plasma insulin-like growth factor-1 levels weakened the stem and progenitor cell–birth weight associations. The positive associations between birth weight and stem cell measurements for term newborns with a normal-to-high birth weight support the stem cell burden hypothesis of cancer risk

    Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?

    Get PDF

    Pathobiology of tobacco smoking and neurovascular disorders: untied strings and alternative products

    Get PDF

    “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels

    Get PDF
    corecore