101 research outputs found

    The sacred and the profane: biotechnology, rationality, and public debate

    Get PDF
    Davies G, 2006. The definitive, peer-reviewed and edited version of this article is published in Environment and Planning A, 38(3), pp. 423 – 443 DOI: 10.1068/a37387This paper explores the forms of argumentation employed by participants in a recent public engagement process in the United Kingdom around new technologies for organ transplantation, with specific reference to xenotransplantation and stem-cell research. Two forms of reasoning recur throughout participants’ deliberations which challenge specialist framing of this issue. First, an often scatological humour and sense of the profane are evident in the ways in which participants discuss the bodily transformations that such technologies demand. Second, a sense of the sacred, in which new biotechnologies are viewed as against nature or in which commercial companies are ‘playing god’, is a repetitive and well-recognised concern. Such forms of reasoning are frequently dismissed by policymakers as ‘uninformed gut reactions’. Yet they also form a significant part of the repertoire of scientists themselves as they proclaim the hope of new medical breakthroughs, or seek to reconstruct ideas of the body to facilitate new biotechnological transformations. Through questioning of assumptions in Habermas’s notion of discourse ethics, and exploring the importance of hybridity and corporeality as concepts in ethical thinking, the author suggests that, far from being ill-formed opinions, such reasonings perform an important function for thinking through the ontological significance of the corporealisation of these proposed new forms of human and animal bodies

    β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells

    Get PDF
    β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.This project has been funded by Abbott Nutrition R&D

    Has Selection for Improved Agronomic Traits Made Reed Canarygrass Invasive?

    Get PDF
    Plant breeders have played an essential role in improving agricultural crops, and their efforts will be critical to meet the increasing demand for cellulosic bioenergy feedstocks. However, a major concern is the potential development of novel invasive species that result from breeders' efforts to improve agronomic traits in a crop. We use reed canarygrass as a case study to evaluate the potential of plant breeding to give rise to invasive species. Reed canarygrass has been improved by breeders for use as a forage crop, but it is unclear whether breeding efforts have given rise to more vigorous populations of the species. We evaluated cultivars, European wild, and North American invader populations in upland and wetland environments to identify differences in vigor between the groups of populations. While cultivars were among the most vigorous populations in an agricultural environment (upland soils with nitrogen addition), there were no differences in above- or below-ground production between any populations in wetland environments. These results suggest that breeding has only marginally increased vigor in upland environments and that these gains are not maintained in wetland environments. Breeding focuses on selection for improvements of a specific target population of environments, and stability across a wide range of environments has proved elusive for even the most intensively bred crops. We conclude that breeding efforts are not responsible for wetland invasion by reed canarygrass and offer guidelines that will help reduce the possibility of breeding programs releasing cultivars that will become invasive

    Mitochondrial function as a determinant of life span

    Get PDF
    Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion

    Anaerobic performance in masters athletes

    Full text link

    Studies of Soil Moisture in the “Great Plains” Region

    No full text

    A Remarkable Accumulation of Nitrogen, Carbon and Humus in a Prairie Soil.

    No full text

    Effectiveness of Calcium Metaphosphate and Fused Rock Phosphate on Alfalfa 1

    No full text

    The Importance of the Water Contained in the Deeper Portions of the Subsoil

    No full text
    corecore