26,189 research outputs found

    The Stellar Halo in the Large Magellanic Cloud: Mass, Luminosity, and Microlensing Predictions

    Full text link
    Recently obtained kinematic data has shown that the Large Magellanic Cloud (LMC) possesses an old stellar halo. In order to further characterize the properties of this halo, parametric King models are fit to the surface density of RR Lyrae stars. Using data from both the MACHO and OGLE II microlensing surveys, the model fits yield the center of their distribution at RA = 05:21.1+-0.8, Dec = -69:45+-6 (J2000) and a core radius of 1.42+-0.12 kpc. As a check the halo model is compared with RR Lyrae star counts in fields near the LMC's periphery previously surveyed with photographic plates. These data, however, require a cautious interpretation. Several topics regarding the LMC stellar halo are discussed. First, the properties of the halo imply a global mass-to-light ratio of M/L_V = 5.3+-2.1 and a total mass of 1.6+-0.6 10^10 M_sun for the LMC in good agreement with estimates based on the rotation curve. Second, although the LMC's disk and halo are kinematically distinct, the shape of the surface density profile of the halo is remarkably similar to that of the young disk. For example, the best-fit exponential scale length for the RR Lyrae stars is 1.47+-0.08 kpc, which compares to 1.46 kpc for the LMC's blue light. In the Galaxy, the halo and disk do not resemble each other like this. Finally, a local maximum in the LMC's microlensing optical depth due to halo-on-disk stellar self-lensing is predicted. For the parameters of the stellar halo obtained, this maximum is located near MACHO events LMC-4 and LMC-23, and is large enough to possibly account for these two events, but not for all of the observed microlensing.Comment: 11 pages, 1 figure, accepted to ApJ Letter

    DC magnetic field generation in unmagnetized shear flows

    Get PDF
    The generation of DC magnetic fields in unmagnetized plasmas with velocity shear is predicted for non relativistic and relativistic scenarios either due to thermal effects or due to the onset of the Kelvin-Helmholtz instability (KHI). A kinetic model describes the growth and the saturation of the DC field. The predictions of the theory are confirmed by multidimensional particle-in-cell simulations, demonstrating the formation of long lived magnetic fields (t∼100sωpi−1t \sim 100s \omega_{pi}^{-1}) along the full longitudinal extent of the shear layer, with transverse width on the electron length scale (γ0c/ωpe\sqrt{\gamma_0}c/\omega_{pe}), reaching magnitudes eBDC/mecωpe∼β0γ0eB_{\mathrm{DC}}/m_ec\omega_{pe}\sim \beta_0\sqrt{\gamma_0}

    Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    Get PDF
    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergence of a strong and large-scale dc magnetic field component, which is not captured by the standard linear fluid theory. This dc component arises from kinetic effects associated with the thermal expansion of electrons of one flow into the other across the shear layer, whilst ions remain unperturbed due to their inertia. The electron expansion forms dc current sheets, which induce a dc magnetic field. Our results indicate that most of the electromagnetic energy developed in the KHI is stored in the dc component, reaching values of equipartition on the order of 10−310^{-3} in the electron time-scale, and persists longer than the proton time-scale. Particle scattering/acceleration in the self generated fields of these shear flow instabilities is also analyzed

    Transverse electron-scale instability in relativistic shear flows

    Get PDF
    Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic (≫c/ωpe\gg c/\omega_{pe}) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales

    Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    Get PDF
    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and light sources.Comment: 18 pages, 4 figures, 1 tabl

    New Understanding of Large Magellanic Cloud Structure, Dynamics and Orbit from Carbon Star Kinematics

    Full text link
    We derive general expressions for the LMC velocity field which we fit to kinematical data for 1041 carbon stars. We demonstrate that all previous studies of LMC kinematics have made unnecessary over-simplifications that have led to incorrect estimates of important structural parameters. We compile and improve LMC proper motion estimates to support our analysis. We find that the kinematically determined position angle of the line of nodes is 129.9 +/- 6.0 deg. The LMC inclination changes at a rate di/dt = -103 +/- 61 deg/Gyr, a result of precession and nutation induced by Milky Way tidal torques. The LMC rotation curve V(R) has amplitude 49.8 +/- 15.9 km/s, 40% lower than what has previously (and incorrectly) been inferred from e.g. HI. The dynamical center of the carbon stars is consistent with the center of the bar and the center of the outer isophotes, but not with the HI kinematical center. The enclosed mass inside 8.9 kpc is (8.7 +/- 4.3) x 10^9 M_sun, more than half of which is due to a dark halo. The LMC has a larger vertical thickness than has traditionally been believed. Its V/sigma is less than the value for the Milky Way thick disk. We discuss the implications for the LMC self-lensing optical depth. We determine the LMC velocity and orbit in the Galactocentric rest frame and find it to be consistent with the range of velocities that has been predicted by models for the Magellanic Stream. The Milky Way dark halo must have mass >4.3 x 10^{11} M_sun and extent >39 kpc for the LMC to be bound. We predict the LMC proper motion velocity field, and discuss techniques for kinematical distance estimation. [ABRIDGED]Comment: 57 pages, LaTeX, with 11 PostScript figures. Submitted to the Astronomical Journa

    Fertilização com uréia em superfície em pastagem irrigada e a volatilização de amônia.

    Get PDF
    A aplicação de uréia em superfície na pastagem pode ocasionar elevadas perdas de amônia por volatilização e uma das alternativas para minimizar esse efeito é a irrigação ou a precipitação logo após a adubação. O objetivo dessa pesquisa foi avaliar o efeito da aplicação de lâminas de água, após a adubação com uréia (75 kgN/ha) na superfície e a lanço em pastagem de colonião, nas perdas de N por volatilização. Foram realizados três experimentos em três épocas, verão, inverno e primavera. O delineamento experimental foi em faixas, em sistema de aspersão em linha, com cinco repetições. Os tratamentos foram quatro níveis de irrigação após a adubação com uréia, sendo três tratamentos com lâminas de água e um controle (sem irrigação). Um dos tratamentos consistia em elevar a umidade do solo à capacidade de campo e os outros dois eram lâminas de água intermediárias aos do controle e capacidade de campo, havendo variação conforme a estação do ano. No verão, a aplicação de apenas 3,2 mm de água elevou a umidade do solo para 52,4% da capacidade de água disponível e reduziu as perdas de N-NH3 para menos de 3,1 % do N aplicado, enquanto a ausência de irrigação provocou perdas de 30,5%. No inverno e na primavera a volatilização de N-NH3 foi baixa, mesmo na ausência de irrigação após a adubação. Na primavera, a irrigação com 16 mm de água elevou a umidade do solo à capacidade de campo e reduziu as perdas para 1,6 % do N aplicado, enquanto no controle as perdas foram de 5%

    The Mass of the MACHO-LMC-5 Lens Star

    Get PDF
    We combine the available astrometric and photometric data for the 1993 microlensing event MACHO-LMC-5 to measure the mass of the lens, M=0.097 +/- 0.016 Msun. This is the most precise direct mass measurement of a single star other than the Sun. In principle, the measurement error could be reduced as low as 10% by improving the trig parallax measurement using, for example, the Space Interferometry Mission. Further improvements might be possible by rereducing the original photometric lightcurve using image subtraction or by obtaining new, higher-precision baseline photometry of the source. We show that the current data strongly limit scenarios in which the lens is a dark (i.e., brown-dwarf) companion to the observed M dwarf rather than being the M dwarf itself. These results set the stage for a confrontation between mass estimates of the M dwarf obtained from spectroscopic and photometric measurements and a mass measurement derived directly from the star's gravitational influence. This would be the first such confrontation for any isolated star other than the Sun

    Slow down of a globally neutral relativistic e−e+e^-e^+ beam shearing the vacuum

    Get PDF
    The microphysics of relativistic collisionless sheared flows is investigated in a configuration consisting of a globally neutral, relativistic e−e+e^-e^+ beam streaming through a hollow plasma/dielectric channel. We show through multidimensional PIC simulations that this scenario excites the Mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the e−e+e^-e^+ beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam's kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable
    • …
    corecore