962 research outputs found

    Hybrid Simulation of Cosmic Ray Air Showers

    Full text link
    Air shower simulations are essential for interpreting data from cosmic ray experiments. At highest energies though, a microscopic treatment of a whole shower is not possible any more, since it would require a huge amount of CPU-time. We review hybrid approaches of air shower simulation which try to overcome this problem without giving rise to artificial fluctuations as generated by the thinning algorithm.Comment: 8 pages, 9 figures, invited talk at the XIII International Symposium on Very High Energy Cosmic Ray Interactions (Sept.6-12), Pylos, Greec

    Comment on Counting Black Hole Microstates Using String Dualities

    Full text link
    We discuss a previous attempt at a microscopic counting of the entropy of asymptotically flat non-extremal black-holes. This method used string dualities to relate 4 and 5 dimensional black holes to the BTZ black hole. We show how the dualities can be justified in a certain limit, equivalent to a near horizon limit, but the resulting spacetime is no longer asymptotically flat.Comment: 10 pages, harvmac. v(2) typo correcte

    Holography and Defect Conformal Field Theories

    Full text link
    We develop both the gravity and field theory sides of the Karch-Randall conjecture that the near-horizon description of a certain D5-D3 brane configuration in string theory, realized as AdS_5 x S^5 bisected by an AdS_4 x S^2 "brane", is dual to N=4 Super Yang-Mills theory in R^4 coupled to an R^3 defect. We propose a complete Lagrangian for the field theory dual, a novel "defect superconformal field theory" wherein a subset of the fields of N=4 SYM interacts with a d=3 SU(N) fundamental hypermultiplet on the defect preserving conformal invariance and 8 supercharges. The Kaluza-Klein reduction of wrapped D5 modes on AdS_4 x S^2 leads to towers of short representations of OSp(4|4), and we construct the map to a set of dual gauge-invariant defect operators O_3 possessing integer conformal dimensions. Gravity calculations of and are given. Spacetime and N-dependence matches expectations from dCFT, while the behavior as functions of lambda = g^2 N at strong and weak coupling is generically different. We comment on a class of correlators for which a non-renormalization theorem may still exist. Partial evidence for the conformality of the quantum theory is given, including a complete argument for the special case of a U(1) gauge group. Some weak coupling arguments which illuminate the duality are presented.Comment: 47 pages, LaTeX, 2 figures, feynmf. v2: fixed minor errors, added references. v3: fixed more typo

    Superconducting and pseudogap phases from scaling near a Van Hove singularity

    Get PDF
    We study the quantum corrections to the Fermi energy of a two-dimensional electron system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization of the leading logarithm near the divergent density of states. A phase of d-wave superconductivity arises beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower doping levels, the condensation of particle-hole pairs due to the nesting of the saddle points takes over, leading to the opening of a gap for quasiparticles in the neighborhood of the singular points.Comment: 4 pages, 6 Postscript figures, the physical discussion of the results has been clarifie

    Thermal Conductivity of Spin-1/2 Chains

    Full text link
    We study the low-temperature transport properties of clean one-dimensional spin-1/2 chains coupled to phonons. Due to the presence of approximate conservation laws, the heat current decays very slowly giving rise to an exponentially large heat conductivity, κ eT/T\kappa ~ e^{T^*/T}. As a result of an interplay of Umklapp scattering and spinon-phonon coupling, the characteristic energy scale TT^* turns out to be of order ΘD/2\Theta_D/2, where ΘD\Theta_D is the Debye energy, rather than the magnetic exchange interaction JJ -- in agreement with recent measurements in SrCuO compounds. A large magnetic field strongly affects the heat transport by two distinct mechanisms. First, it induces a LINEAR spinon--phonon coupling, which alters the nature of the T>0T -> 0 fixed point: the elementary excitations of the system are COMPOSITE SPINON-PHONON objects. Second, the change of the magnetization and the corresponding change of the wave vector of the spinons strongly affects the way in which various Umklapp processes can relax the heat current, leading to a characteristic fractal--like spiky behavior of κ\kappa when plotted as a function of magnetization at fixed T.Comment: 16 pages, RevTex4, 2 figures included; revised refs. and some useful comments on experimental relevance. On July 12 2005, added an appendix correcting an error in the form of the phonon propagator. The main result is unchange

    Cosmic Neutrinos and the Energy Budget of Galactic and Extragalactic Cosmic Rays

    Get PDF
    Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 10^{20} eV and 10^{13} eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. We will discuss how the cosmic ray connection sets the scale of the anticipated cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube.Comment: 13 pages, Latex2e, 3 postscript figures included. Talk presented at the International Workshop on Energy Budget in the High Energy Universe, Kashiwa, Japan, February 200

    Kontsevich product and gauge invariance

    Full text link
    We analyze the question of U(1)U_{\star} (1) gauge invariance in a flat non-commutative space where the parameter of non-commutativity, θμν(x)\theta^{\mu\nu} (x), is a local function satisfying Jacobi identity (and thereby leading to an associative Kontsevich product). We show that in this case, both gauge transformations as well as the definitions of covariant derivatives have to modify so as to have a gauge invariant action. We work out the gauge invariant actions for the matter fields in the fundamental and the adjoint representations up to order θ2\theta^{2} while we discuss the gauge invariant Maxwell theory up to order θ\theta. We show that despite the modifications in the gauge transformations, the covariant derivative and the field strength, Seiberg-Witten map continues to hold for this theory. In this theory, translations do not form a subgroup of the gauge transformations (unlike in the case when θμν\theta^{\mu\nu} is a constant) which is reflected in the stress tensor not being conserved.Comment: 7 page

    The spectrum of high-energy cosmic rays measured with KASCADE-Grande

    Get PDF
    The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a significant steepening at c. 8x10**16 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.Comment: accepted by Astroparticle Physics June 201

    Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model

    Get PDF
    We devise a computational approach to the Hubbard model that captures the strong coupling dynamics arising when the Fermi level is at a Van Hove singularity in the density of states. We rely on an approximate degeneracy among the many-body states accounting for the main instabilities of the system (antiferromagnetism, d-wave superconductivity). The Fermi line turns out to be deformed in a manner consistent with the pinning of the Fermi level to the Van Hove singularity. For a doping rate δ0.2\delta \sim 0.2, the ground state is characterized by d-wave symmetry, quasiparticles gapped only at the saddle-points of the band, and a large peak at zero momentum in the d-wave pairing correlations.Comment: 4 pages, 2 Postscript figure
    corecore