16,358 research outputs found

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio

    Uniform approximation for the overlap caustic of a quantum state with its translations

    Full text link
    The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known to have a caustic along the corresponding classical closed phase space curve in the case of a single degree of freedom. Its Fourier transform, the semiclassical chord function, also has a caustic along the conjugate curve defined as the locus of diameters, i.e. the maximal chords of the original curve. If the latter is convex, so is its conjugate, resulting in a simple fold caustic. The uniform approximation through this caustic, that is here derived, describes the transition undergone by the overlap of the state with its translation, from an oscillatory regime for small chords, to evanescent overlaps, rising to a maximum near the caustic. The diameter-caustic for the Wigner function is also treated.Comment: 14 pages, 9 figure

    Periodic orbit bifurcations and scattering time delay fluctuations

    Full text link
    We study fluctuations of the Wigner time delay for open (scattering) systems which exhibit mixed dynamics in the classical limit. It is shown that in the semiclassical limit the time delay fluctuations have a distribution that differs markedly from those which describe fully chaotic (or strongly disordered) systems: their moments have a power law dependence on a semiclassical parameter, with exponents that are rational fractions. These exponents are obtained from bifurcating periodic orbits trapped in the system. They are universal in situations where sufficiently long orbits contribute. We illustrate the influence of bifurcations on the time delay numerically using an open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200

    Experimental Observation of Environment-induced Sudden Death of Entanglement

    Get PDF
    We demonstrate the difference between local, single-particle dynamics and global dynamics of entangled quantum systems coupled to independent environments. Using an all-optical experimental setup, we show that, while the environment-induced decay of each system is asymptotic, quantum entanglement may suddenly disappear. This "sudden death" constitutes yet another distinct and counter-intuitive trait of entanglement.Comment: 4 pages, 4 figure

    Spin-glass behaviour on random lattices

    Get PDF
    The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction ww of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w=1/2w=1/2, correponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w<1/2w<1/2) from a region with spin-glass, ferromagnetic, mixed, and paramagnetic phases (w>1/2w>1/2)

    Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d

    Full text link
    As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is characterized by the existence of an intra-unit-cell magnetic order revealed by polarized neutron scattering technique. We report here a supplementary set of polarized neutron scattering measurements for which the direction of the magnetic moment is determined and the magnetic intensity is calibrated in absolute units. The new data allow a close comparison between bilayer systems YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the range of the magnetic correlations and the role of disorder around optimal doping.Comment: 12 pages, 8 figures, submitted to physical review
    corecore