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ABSTRACT

We demonstrate, using an all-optical setup, the difference between local and global dynamics of entangled
quantum systems coupled to independent environments. Even when the environment-induced decay of each
system is asymptotic, quantum entanglement may suddenly disappear.
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1. INTRODUCTION

Entanglement and decoherence are closely connected concepts. Their subtleties were brought to light by re-
markable papers in the year 1935: that of Einstein, Podolski, and Rosen,1 which became known as the “EPR
paper,” and a series of papers by Schrödinger,2 which contained seminal ideas for the characterization of entan-
glement, and discussed the famous “cat paradox.” The two concepts also play an intertwining and subtle role in
quantum-measurement theory.3,4 It is now clear that the emergence of the classical world from the underlying
quantum substrate is intimately connected to the phenomenon of decoherence, which stems from the unavoidable
interaction between the system of interest and its environment. A coherent superposition between two states of
the system gets entangled with two states of the environment, thus turning the initial state of the system into a
mixture.5,6 The dynamics of decoherence, of crucial importance for the understanding of the quantum-classical
boundary, has been the subject of theoretical7–9 and experimental10 investigation.

In recent years, entanglement has turned from an intriguing and essential component of quantum physics into a
practical tool for communications and computation. In fact, the real-world success of quantum computation11,12

and communication13–19 relies on the longevity of entanglement in multi-particle quantum states. The presence
of decoherence in communication channels and computing devices degrades the entanglement when the particles
propagate or the computation evolves.

Decoherence leads to both local dynamics, associated with single-particle dissipation, diffusion, and decay,
and to global dynamics, which may provoke the disappearance of entanglement at a finite time.20–24 This
phenomenon, known as “entanglement sudden death”,24 is strikingly different from single-particle decay, which
occurs asymptotically. It has been studied recently by many authors, within the realm of simple models, dealing
with a particle in a diffusive bath, or a two-level atom spontaneously emitting radiation.20–24

We have demonstrated this effect experimentally, using an all-optical setup, for a two-qubit system interacting
with independent environments. In the next Section, we discuss the relevant dynamics of the system considered
by us. In Sect. 3 we present the experimental setup. The experimental results are discussed in Sect. 4. Finally,
we summarize our conclusions in Sect. 5.
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2. THE AMPLITUDE CHANNEL

Consider a two-level quantum system S (upper and lower states |e〉 and |g〉, respectively) under the action of a
zero-temperature reservoir R. At zero temperature, the reservoir R is in the |0〉R (vacuum) state, and the S −R
interaction can be represented by a quantum map, known as the amplitude decay channel:11

|g〉S ⊗ |0〉R → |g〉S ⊗ |0〉R
|e〉S ⊗ |0〉R → √

1 − p |e〉S ⊗ |0〉R +
√

p |g〉S ⊗ |1〉R .
(1)

Under this map, the lower state |g〉 is not affected, while the upper state |e〉 either decays to |g〉 with probability
p, creating one excitation in the environment (state |1〉R), or remains in |e〉, with probability 1 − p. This would
be the situation, for instance, in the spontaneous emission of a two-level atom. In this case, the state |1〉R would
correspond to one photon in the reservoir. Under the Markovian approximation, p = 1 − exp (−Γt), and the
decay probability approaches unity exponentially in time. As an initial pure state a|e〉 + b|g〉 decays, it gets
entangled with the environment, gradually losing its coherence and its purity over time. Complete decay occurs
asymptotically in time (p → 1 when t → ∞), when the two-level system is again described by the pure state |g〉.

One should note that map (1) encompasses several other kinds of dynamics, not necessarily related to decay
under the influence of a reservoir, which differ only by the time dependence of the parameter p. Thus, for instance,
with p = sin2(gt/2), the above map describes the reversible interaction, with Rabi frequency g, between a two-
level atom and a high-Q cavity mode. The full Rabi cycle is implemented when p goes from 0 to 1 and then
back to 0.

Now consider two entangled qubits that evolve according to map (1). What is then the dynamics of the
entanglement of the two-qubit system? Does it mimic the behavior of each qubit, disappearing only when p
becomes equal 1 (this corresponds to asymptotic decay, for the reservoir situation, or to half a Rabi cycle, for
the reversible case), or does it disappear for some other value of p? In other words, what is the relation between
the global entanglement dynamics and the local decay of the constituent subsystems?

2.1. Entanglement and separability

A two-qubit pure state is entangled, or non-separable, if and only if the total state cannot be expressed as a
product of the individual qubit states: |ψ〉 �= |φ〉1 ⊗ |ϕ〉2. Likewise, a mixed bipartite state represented by a
density matrix ρ̂ is separable if and only if it can be written as a convex sum of products of individual density
matrices: ρ̂ =

∑
i piρ̂

(1)
i ⊗ ρ̂

(2)
i , with 0 ≤ pi ≤ 1. For pure bipartite states, the Von Neumman entropy of each

subsystem, defined in terms of the respective partial density matrix, is a measure of entanglement:25 it is zero
for a separable state, and maximal for a maximally entangled state, which corresponds to maximal ignorance
about the state of each subsystem. For a mixed state expressed in terms of pure states by ρ̂ =

∑
i pi|ψi〉〈ψi|,

one cannot say however that the corresponding measure of entanglement is given by the weighted average of the
measures for each of the pure states in this sum, since this decomposition is not unique. One defines then the
entanglement of formation26 as the minimum value, over all possible decompositions, of the weighted averages.

2.2. Concurrence

For a two-qubit state ρ̂, Wootters26 introduced as a measure of entanglement the concurrence C, given by

C = max {0, Λ} , (2)

where
Λ =

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4 , (3)

and the quantities λi are the positive eigenvalues, in decreasing order, of the matrix

ρ̂ (σy ⊗ σy) ρ̂∗ (σy ⊗ σy) . (4)

Here σy is the second Pauli matrix and the conjugation occurs in the computational basis {|00〉 , |01〉 , |10〉 , |11〉}.
C quantifies the amount of quantum correlation that is present in the system, and can assume values between 0
(only classical correlations) and 1 (maximal entanglement).
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This measure cannot be given, in the most general case, an operational meaning. This implies that, in order
to evaluate the concurrence, one needs to fully reconstruct the state of the system. For pure states, it is possible
to associate a projective measurement to concurrence, if two copies of the state are available.27,28 In some cases,
even when the state is not pure, it is also possible to attach a physical meaning to concurrence. This is the
situation here, as will be shown in Section 2.3

For the dynamics given by Eq. (1), and an initial state of the form

|Φ〉 = |α| |gg〉 + |β| exp(iθ) |ee〉 , (5)

the qubit reduced density matrix is given by

ρ̂ (p) =

⎛
⎜⎜⎝

|α|2 + p2 |β|2 0 0 (1 − p) |αβ| e−iθ

0 (1 − p) p |β|2 0 0
0 0 (1 − p) p |β|2 0

(1 − p) |αβ| eiθ 0 0 (1 − p)2 |β|2

⎞
⎟⎟⎠ , (6)

where the rows and columns are indexed according to the sequence (gg, ge, eg, ee). The general structure of this
density matrix is easily understood: due to the coupling with the environment, the initial coherence between
states |e〉 and |g〉 vanishes as p → 1. The states |eg〉 and |ge〉, on the other hand, are populated by the decay of
the initial state, and also feed the state |gg〉, but no additional coherence is built by the incoherent decay.

From Eq. (6), the concurrence can be easily derived:

C = max {0, Λ} with Λ = 2 (1 − p) |β| (|α| − p |β|) . (7)

One can see that for |β| < |α|, entanglement disappears only when the individual qubits have completely decayed
(p = 1), while for |β| > |α|, entanglement disappears for p = |α/β| < 1. This implies, for p = 1 − exp (−Γt)
(decaying system), that entanglement will disappear at a finite time, before complete decay of the two-level
system. This phenomenon has been called “entanglement sudden death”.24 Since the concurrence of the initial
state (p = 0) is C = 2|αβ|, the entanglement dynamics of two states with the same initial concurrence can be
quite different: the same value of the initial concurrence may correspond to either |α| > |β| or |α| < |β|.

As mentioned before, map (1) also describes the oscillatory exchange of energy between a two-level atom and
a cavity mode. In this case, p = sin2(gt/2), and one also gets a “sudden death” phenomenon:29 if |β| > |α|,
entanglement disappears at a time smaller than the Rabi half cycle, when sin2(gt/2) = |α/β| for the first time,
stays zero for a period of time, and is recovered when again sin2(gt/2) = |α/β|. This behavior repeats itself as
the Rabi oscillations go on.

2.3. Entanglement Witness

Entanglement witnesses are non-positive operators that are positive on separable states.30 An operator Ŵ is
an entanglement witness if Tr(Ŵ ρ̂) ≥ 0 for any separable state, and there exist entangled states σ̂ for which
Tr(Ŵ σ̂) < 0. These operators offer a simple way to characterize entanglement in some cases. Of course,
entanglement witnesses allow one to identify some, but not all, entangled states.

For the dynamics described by Eq. (1), and the initial state (5). it is possible to define a “perfect” time-
independent witness,23 so that −Tr(Ŵ ρ̂) coincides precisely with the concurrence of the mixed state ρ̂ that
evolves from |Ψ (0)〉. That is, Tr(Ŵ ρ̂) becomes positive only when the state becomes separable.

The entanglement witness in this case is given by

Ŵθ ≡ 1 − 2 |Φ (θ)〉 〈Φ (θ)| , (8)

where
|Φ (θ)〉 =

[|gg〉 + eiθ |ee〉] /
√

2 .
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Figure 1. Amplitude-decay channel for an entangled two-photon state, generated by parametric down-conversion in
type-I non-linear crystals.

One can then show, from Eqs. (6) and (7), that

Λ = −Tr
[
Ŵθρ̂ (t)

]
= 2

[
P (θ, t) − 1

2

]
,

where P (θ, t) = Tr[|Φ(θ)〉〈Φ(θ)|ρ̂(t)]. This means that the concurrence is equal to twice the excess probability,
with respect to 1/2, of finding the state of the system in the maximally entangled state |Φ (θ)〉. It is quite
remarkable that, in this case, concurrence can be given a simple physical meaning, valid throughout the evolution
of the system: it can be determined by measuring the probability of finding the system, initially in the state |Φ〉
given by Eq. (5), in the maximally-entangled state |Φ (θ)〉.

We show now how map (1) can be implemented with an all-optical setup, based on twin-photon beams.

3. EXPERIMENTAL SETUP

The experimental realization of Eq. (1) is made by associating the H and V polarizations of a photon to the
ground and excited states of the two-level system S, respectively. The reservoir R in turn is represented by two
different momentum modes of the photon.

The experimental setup is shown in Fig. 1, and may be divided into three blocks: the generation of entangled
pairs, the realization of the quantum map, and the quantum-state tomography (QST). These steps are described
with detail in the following subsections. We also show how to implement another quantum map, corresponding
to a dephasing channel, with a small modification of the setup.

3.1. Entangled-photon source

The polarization-entangled photon pairs are obtained from a two-crystal source31 composed of two adjacent
nonlinear crystals, which are pumped by the same laser, giving rise to parametric down-conversion. The crystals
are set with their optic axes perpendicular, so that one of the crystals produces vertically-polarized signal and
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idler photons and the other produces horizontally polarized photons. Both crystals produce photons along
the same output directions, so that, after propagation and filtering by a pinhole, vertically and horizontally
polarized modes become indistinguishable and therefore mutually coherent. The degree of coherence obtained in
this process is increased when using thin crystals, large propagation distances, and a narrow pinhole for spatial
filtering. This degree of coherence will also determine the degree of purity of the entangled state produced. In
our setup, we have used 2mm long LiIO3(lithium Iodate) nonlinear crystals that were pumped with a continuous-
wave He-Cd laser oscillating at 442nm. The propagation distances from the crystal to the detector pinholes were
about 1,5m for both signal and idler beams and the detection pinhole diameters were about 1mm. Under these
conditions, we obtained entangled states with purity of 95% or higher.

The entangled state thus produced is given by:

|ψ〉 = |α||HH〉 + |β|eiθ|V V 〉 , (9)

with |α|2 + |β|2 = 1.

The coefficients |α| and |β| can be controlled through the polarization of the pump laser. If the pump
polarization is linear at π/4 with respect to the crystal axes, the two crystals will be pumped equally and
|α| = |β|. Other directions of the pump polarization will produce non maximally-entangled states. The phase θ
can be controlled by making the pump polarization elliptical, or in other words, introducing a phase difference
between horizontal and vertical polarization components. It is also possible to prepare any one of the Bell states,
starting from the state given by Eq. (9). Thus, a half-wave plate in one of the beams leads to states like:

|ψ〉 = |α||HV 〉 + |β|eiθ|V H〉. (10)

3.2. Interaction with the environment

The crucial part of our experiment is realization of map (1). Fig. 2 shows the interferometer that implements
the interaction of the photon polarization with the environment as described by map (1). The main idea behind
the interferometer is to separate the horizontal (H) and vertical (V ) polarization components of a light beam

Figure 2. Amplitude-decay channel for a single photon.
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and to be able to manipulate each one of these polarization modes independently, recombining them coherently
afterwards. This task requires substantial interferometric stability, as this operation is performed on both signal
and idler photons, and any interferometric fluctuations will give rise to uncontrolled decoherence of the input
entangled state.

Sagnac interferometers are very stable and are thus good candidates for our application. In a polarization-
dependent Sagnac interferometer, H- and V -polarization components are separated in a polarized beam-splitter
and propagate in opposite directions inside the interferometer, eventually exiting through the same port of the
input/output beam-splitter. The remarkable stability comes from the fact that both H- and V -polarization
components of the field propagate through the same path, though in opposite directions. Thus they both suffer
the same mechanical or thermal fluctuations, which leads to excellent stability. However, this exact configuration
is not adequate for our purposes, since it does not allow the independent manipulation of the polarization
components.

The interferometer shown in Fig. 2 is a Sagnac-like interferometer modified to allow independent actions
on the different polarization modes. The modification consists in aligning the mirrors inside the interferometer
in such a way that H- and V -polarization components are not exactly counter-propagating, but rather follow
parallel paths. Using this configuration, we were able to achieve high stability and at the same time we could
insert the half-wave plate (HWP1) in the V polarization mode and a compensation plate (HWPC) in the H
mode. HWP1 will be used in the implementation of a reservoir and HWPC is necessary in order to balance the
optical paths, after HWP1 is introduced.

In this modified Sagnac, a photon, initially in the incoming part of mode a, is split into its horizontal (H)
and vertical (V ) polarization components by a polarizing beam splitter (PBS1). Let us ignore the half-wave
plates HWP1 and HWPC for the moment. The V -polarization component is reflected and propagates through
the interferometer in the clockwise direction, and, if unaltered, reflects through PBS1 into the outgoing part
of mode a. The H-polarization component is transmitted and propagates through the interferometer in the
counter-clockwise direction and transmits through PBS1, also into the outgoing part of mode a.

To realize the amplitude decay given in map (1), we use HWP1 to rotate the polarization of the V component
to cos(2θ)|V 〉 + sin(2θ)|H〉, where θ is the angle of HWP1. Suppose that an incoming photon is V -polarized.
When this photon exits the interferometer through PBS1, it is transmitted into mode b with probability p =
sin2(2θ) and reflected into mode a with probability cos2(2θ). This evolution can thus be described by |V 〉|a〉 −→√

1 − p|V 〉|a〉+√
p|H〉|b〉. Identifying the outgoing modes a and b (which correspond to orthogonal spatial modes)

as the states of the reservoir with zero and one excitation, respectively, this operation is equivalent to that on the
|e〉|0〉R state in map (1). An incoming H-polarized photon is left untouched, corresponding to the first line in
Eq. (1). This process realizes therefore the amplitude-decay channel, and is identical to the decay of a two-level
system. Half-wave plate HWPC, oriented at 0◦, is used solely to match the lengths of the two optical paths.
The path lengths are adjusted so that if HWP1 is oriented at 0◦, the polarization state in mode a after the
interferometer is exactly the same as the input state.

3.3. Dephasing reservoir

A simple modification of the present scheme leads to the phase-damping channel, described by the map:11

|g〉S ⊗ |0〉R → |g〉S ⊗ |0〉R
|e〉S ⊗ |0〉R → √

1 − p |e〉S ⊗ |0〉R +
√

p |e〉S ⊗ |1〉R .
(11)

This map could represent elastic scattering between atom and reservoir. States |e〉 and |g〉 are not changed by
the interaction, but any coherent superposition of them gets entangled with the reservoir. There is no longer
decay, but only loss of coherence between ground and excited states. The dephasing map can be implemented
with the same interferometer through the addition of an extra HWP at 45◦ in mode b before the quantum-state
tomography system (or, equivalently, through the removal of HWP3 and redefinition of the QST measurements).
For the dephasing channel, all initial states of the form (5) present identical behavior, becoming completely
disentangled only when p = 1.
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3.4. Quantum-state tomography

After the interferometer step, one performs quantum-state tomography of the polarization state of the photon
pair, disregarding the environment degrees of freedom (modes a and b). Conceptually, the simplest way of doing
this would be to send photons in modes a and b side by side through wave-plates and a polarizer, so that both
modes are detected together in the same detector. The problem with this approach is that photon counters do
not detect over large areas. The most efficient detectors available are based on avalanche photodiodes, which
have small sensitive areas in order to reduce dark counts. We have thus used the scheme shown in Figs. 1 and
2 (tomography block). Modes a and b propagate together through two wave plates, QWP2 and HWP2, shown
in Fi. 2. Mode b propagates through an additional half-wave plate HWP3, set at π/4, so that the horizontal
polarization of a photon in this mode is turned into a vertical polarization, which is reflected by the polarized
beam splitter PBS2. In this way, modes a and b are recombined at the polarizing beam splitter PBS2. QWP2 and
HWP2 implement polarization transformations on both modes, necessary to the polarization tomography. After
propagation through QWP2 and HWP2, we must project both modes a and b onto the same linear polarization
and detect each of them. This is done by using the two input ports of PBS2, so that the two modes are detected
with the same detector. Projection of mode a onto the H polarization is equivalent to projection of mode b onto
the V polarization, after it propagates through HWP3. In addition to allowing the coupling and simultaneous
analysis of modes a and b, the fact that the optical path from PBS1 to PBS2 is larger for mode b than for mode
a assures that modes a and b are orthogonal. The path-length difference (about 5 cm) is much larger than the
coherence length of the photons, but small enough to ensure that photon pairs in different combinations of modes
a and b (of each interferometer) are detected in the coincidence detection window. Our coincidence window is 5
ns, corresponding to a propagation distance of about 1.5 m, which is much larger than the path length difference
(5 cm). Counts were registered with single-photon counting modules (SPCM-AQR14-Perkin Elmer) based on
avalanche photodiodes. The detectors are equipped with interference filters with central wavelength around
884nm and bandwidths of 10nm.

Polarization tomography was performed for both single photons and photon pairs. In both cases tomography
consists of performing projections onto different polarization states and using the resulting statistics of each
projection to reconstruct the density matrix of the single- or two-photon polarization state. These projections
were implemented using a quarter-wave plate QWP2, a half-wave plate HWP2 and a linear polarization analyzer
PBS2.

For a single qubit, it is implemented by measuring the expectation values of the Pauli operators. When
the qubit is encoded in the polarization of a photon, this amounts to determining its Stokes parameters, or,
equivalently, to measuring its polarization in any tomographically complete basis consisting of 4 states. The four
projections are onto horizontal-, vertical-, diagonal- and circular-polarization states.

For two photons one has to measure the expectation value of all products of two Pauli operators, or, again,
measure the photons polarization in any tomographically complete basis, now consisting of 16 two-photon states.
We followed a quantum-state tomography procedure,32 where coincidence counting rates are measured for 16
combinations between four projections in each of the signal and idler beams. The resulting coincidence statistics
for the 16 combinations are used to reconstruct the density matrix.

From the coincidence counts in all 16 settings, the density matrix can be reconstructed through a set of linear
equations. However, as the raw data have intrinsic statistical errors, the resulting state may turn out to be
non-physical. To overcome this problem, we implemented a χ2 minimization procedure by which the physical
(normalized and positive semidefinite) density matrix that best fitted the data was obtained.

The Poissonian uncertainties in the coincidence counts were propagated to uncertainties in the derived quan-
tities (as purity or concurrence) by Monte Carlo simulation as follows.33 First, we randomly generated counts
from a Poissonian distribution with the same mean as the data for each angle setting. We then reconstructed a
physical density matrix using the same minimization technique as above. Finally, from this density matrix we
computed the value of the derived quantities. A sample for each of these quantities was generated by iterating
this process many times (250 in our case), enough to guarantee convergence of its standard deviation, which was
in turn used as an estimation of the uncertainty in the desired quantity.
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Figure 3. Experimental amplitude decay for a single qubit. PV (V ) and PH(V ) are the probabilities of detecting an input
V -polarized photon in the V and H states, respectively. PV (H) PH(H) are the the probabilities for an input H photon.
The points correspond to experimental data, and the lines are linear fits.

4. EXPERIMENTAL RESULTS

The first step in our experiment was to test the interferometers realizing the amplitude decay channel. This
was done by investigating the decay of a single qubit. We have sent both H and V -polarized single photons
through the interferometer and perfomed polarization-state tomography. The single photons were obtained from
two-photon product states |V V 〉 and |HH〉. Coincidence counts were registered, with one photon propagating
through the interferometer and the other propagating directly to the detector and serving as a trigger, in order
to reduce background noise.

Fig. 3 shows PV (V ), PH(V ), PV (H) PH(H) as a function of p, where PJ(K) is probability of finding an
input K-polarized photon in the J state after the interferometer. The linear behavior in p is associated to an
exponential decay in t, if p = 1 − exp (−Γt) and to Rabi oscillations if p = sin2(gt/2).

For the investigation of entanglement dynamics, non-maximally entangled states were produced, and each
photon sent to a separate interferometer, which implemented an amplitude-damping reservoir, and then to a QST
system. The half-wave plates HWP1 and HWP4 were set to the same angle θ, so that the reservoirs, though
independent, acted with the same probability p. QST of the two-photon state followed the usual recipe of 16
coincidence measurements,32 each lasting 90s, giving an average of about 250 coincidence events. We repeated
the same procedure for different values of p, obtaining the tomographic reconstruction of the output two-photon
polarization state in all cases.

We have investigated two experimental states that, although not pure, are very close to |Φ〉 = |α||HH〉 +
|β|eiδ|V V 〉: state I, defined by |β|2 = |α|2/3, and state II, defined |β|2 = 3|α|2. Tomography of the initial states
I and II showed them to have the same concurrence (∼ 0.8), and similar purity (∼ 0.91− 0.97). Figs. 4a and 4b
show the tomographic reconstructions of the initial (p = 0) and final (p = 1) states, for the initial states I and
II, respectively.

The concurrence was calculated using Eqs. (2) and (3). In all figures, horizontal error bars represent un-
certainty in aligning the waveplates, and vertical error bars correspond to the standard deviations of Monte
Carlo samples obtained from randomly generated counts following the statistics of the experimental data,33 as
described before.

Figure 5 displays the concurrence and the quantity Λ, given by Eq. 3, as a function of the decay probability p,
for the initial states I (triangles) and II (squares). The theoretical curves were obtained by applying map (1) to the
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a b

Figure 4. Tomographic reconstructions for the initial (p = 0) and final (p = 1) entangled states, which are initially

very close to |Φ〉 = |α||HH〉 + |β|eiδ|V V 〉: (a) State I, corresponding to |β|2 = |α|2/3; (b) State II, corresponding to
|β|2 = 3|α|2.

experimentally-determined initial states, which correspond to p = 0. For initial state I, entanglement disappears
asymptotically, and the concurrence goes to zero only when both individual systems have decayed completely
(p = 1). For initial state II, however, the entanglement behaves very differently: the concurrence goes to zero
for p < 1, thus demonstrating “entanglement sudden death.” We stress that the onset of separability (C = 0)
occurs at the same point for all entanglement quantifiers, and is not a particular artifact of the concurrence.

Figure 6 displays −Tr(Ŵ ρ̂), defined by (8), together with the quantity Λ defined by Eq. (3). As expected,
since the initial state is not pure, −Tr(Ŵ ρ̂) does not coincide exactly with the concurrence for entangled states,
but it provides a lower bound: it vanishes before the concurrence does, implying that it is not able to identify
all entangled states.

It is also illustrative to study the purity, defined as trρ̂2, as a function of the decay probability (Fig. 7) for
states I and II. In both cases the purity reaches a minimum but is restored when p = 1, when all photons have
“decayed” to the H-polarization state. State II is more mixed than state I in the intermediate stages of this
process since it has a larger |V V 〉 component, and thus becomes more entangled with the environment.

For the dephasing channel, pure states I and II present identical behavior, becoming completely disentangled
only when p = 1. Fig. 8 shows the concurrence (squares) and bipartite purity (triangle) as a function of p for
the entangled state II.

5. CONCLUSION

We have demonstrated experimentally the phenomenon of sudden disappearance of entanglement for a system of
two qubits, interacting with independent environments. For given environments, states with the same initial con-
currence may exhibit either an abrupt or an asymptotic disappearance of entanglement, even if the constituents
of the system exhibit asymptotic decay. We have explicitly demonstrated that this behavior also depends on
the characteristics of the reservoir, through two examples, corresponding to amplitude decay and dephasing.
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Figure 5. Entanglement decay as a function of the probability p. The squares correspond to experimentally obtained
values of Λ for the case |β|2 = 3|α|2. The solid line is the theoretical prediction of the concurrence for this state, given
by Eq. 2, while the dotted line shows the value of Λ, given by Eq. 3. The triangles are experimental values of Λ for the
case |β|2 = |α|2/3, and the dashed line is the theoretical prediction for Λ and C, which are equivalent for this state.
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Figure 6. Comparison between Λ, given by Eq. (3), and entanglement witness. The black squares correspond to minus
the witness, the gray circles correspond to Λ, determined from the tomographically reconstructed state, for each value of
p, and the gray curve is the theoretical prediction for Λ, obtained by applying Eq. (1) to the initial state.
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Figure 7. Purity as a function of p for the amplitude-damping channel. The squares correspond to experimentally
obtained values of the purity for the case |β|2 = 3|α|2, while the solid line is the theoretical prediction. The triangles
are experimental values of the purity for the case |β|2 = |α|2/3, and the dashed line is the corresponding theoretical
prediction.
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Figure 8. Experimental results for the dephasing channel. Concurrence (squares) and purity (triangles) are shown for
the case |β|2 = 3|α|2. The solid line is the corresponding theoretical prediction for concurrence, given by Eq. 2. The
dashed line is the theoretical prediction for purity, given by trρ̂2. The concurrence goes to zero asymptotically.
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Our approach includes several kinds of dynamics, as for instance Rabi oscillations of a pair of two-level atoms
interacting with two independent field modes in a cavity. The experimental setup represents a reliable and simple
method for studying the dynamics of entangled systems interacting with controlled environments.
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