23,922 research outputs found
Neutral heavy lepton production at next high energy linear colliders
The discovery potential for detecting new heavy Majorana and Dirac neutrinos
at some recently proposed high energy colliders is discussed. These
new particles are suggested by grand unified theories and superstring-inspired
models. For these models the production of a single heavy neutrino is shown to
be more relevant than pair production when comparing cross sections and
neutrino mass ranges.
The process is calculated
including on-shell and off-shell heavy neutrino effects.
We present a detailed study of cross sections and distributions that shows a
clear separation between the signal and standard model contributions, even
after including hadronization effects.Comment: 4 pages including 15 figures, 1 table. RevTex. Accepted in Physical
Review
Spin-glass behaviour on random lattices
The ground-state phase diagram of an Ising spin-glass model on a random graph
with an arbitrary fraction of ferromagnetic interactions is analysed in the
presence of an external field. Using the replica method, and performing an
analysis of stability of the replica-symmetric solution, it is shown that
, correponding to an unbiased spin glass, is a singular point in the
phase diagram, separating a region with a spin-glass phase () from a
region with spin-glass, ferromagnetic, mixed, and paramagnetic phases
()
Re-entrant magnetic field induced charge and spin gaps in the coupled dual-chain quasi-one dimensional organic conductor Perylene[Pt(mnt)]
An inductive method is used to follow the magnetic field-dependent
susceptibility of the coupled charge density wave (CDW) and spin-Peierls (SP)
ordered state behavior in the dual chain organic conductor
Perylene[Pt(mnt)]. In addition to the coexisting SP-CDW state phase
below 8 K and 20 T, the measurements show that a second spin-gapped phase
appears above 20 T that coincides with a field-induced insulating phase. The
results support a strong coupling of the CDW and SP order parameters even in
high magnetic fields, and provide new insight into the nature of the magnetic
susceptibility of dual-chain spin and charge systems.Comment: 6 pages, 6 figure
Experimental Observation of Environment-induced Sudden Death of Entanglement
We demonstrate the difference between local, single-particle dynamics and
global dynamics of entangled quantum systems coupled to independent
environments. Using an all-optical experimental setup, we show that, while the
environment-induced decay of each system is asymptotic, quantum entanglement
may suddenly disappear. This "sudden death" constitutes yet another distinct
and counter-intuitive trait of entanglement.Comment: 4 pages, 4 figure
Living bacteria rheology: population growth, aggregation patterns and cooperative behaviour under different shear flows
The activity of growing living bacteria was investigated using real-time and
in situ rheology -- in stationary and oscillatory shear. Two different strains
of the human pathogen Staphylococcus aureus -- strain COL and its isogenic cell
wall autolysis mutant -- were considered in this work. For low bacteria
density, strain COL forms small clusters, while the mutant, presenting
deficient cell separation, forms irregular larger aggregates. In the early
stages of growth, when subjected to a stationary shear, the viscosity of both
strains increases with the population of cells. As the bacteria reach the
exponential phase of growth, the viscosity of the two strains follow different
and rich behaviours, with no counterpart in the optical density or in the
population's colony forming units measurements. While the viscosity of strain
COL keeps increasing during the exponential phase and returns close to its
initial value for the late phase of growth, where the population stabilizes,
the viscosity of the mutant strain decreases steeply, still in the exponential
phase, remains constant for some time and increases again, reaching a constant
plateau at a maximum value for the late phase of growth. These complex
viscoelastic behaviours, which were observed to be shear stress dependent, are
a consequence of two coupled effects: the cell density continuous increase and
its changing interacting properties. The viscous and elastic moduli of strain
COL, obtained with oscillatory shear, exhibit power-law behaviours whose
exponent are dependent on the bacteria growth stage. The viscous and elastic
moduli of the mutant have complex behaviours, emerging from the different
relaxation times that are associated with the large molecules of the medium and
the self-organized structures of bacteria. These behaviours reflect
nevertheless the bacteria growth stage.Comment: 9 pages, 10 figure
Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d
As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is
characterized by the existence of an intra-unit-cell magnetic order revealed by
polarized neutron scattering technique. We report here a supplementary set of
polarized neutron scattering measurements for which the direction of the
magnetic moment is determined and the magnetic intensity is calibrated in
absolute units. The new data allow a close comparison between bilayer systems
YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the
range of the magnetic correlations and the role of disorder around optimal
doping.Comment: 12 pages, 8 figures, submitted to physical review
Quantum key distribution with higher-order alphabets using spatially-encoded qudits
We propose and demonstrate a quantum key distribution scheme in higher-order
-dimensional alphabets using spatial degrees of freedom of photons. Our
implementation allows for the transmission of 4.56 bits per sifted photon,
while providing improved security: an intercept-resend attack on all photons
would induce an error rate of 0.47. Using our system, it should be possible to
send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio
One-step replica symmetry breaking solution of the quadrupolar glass model
We consider the quadrupolar glass model with infinite-range random
interaction. Introducing a simple one-step replica symmetry breaking ansatz we
investigate the para-glass continuous (discontinuous) transition which occurs
below (above) a critical value of the quadrupole dimension m*. By using a
mean-field approximation we study the stability of the one-step replica
symmetry breaking solution and show that for m>m* there are two transitions.
The thermodynamic transition is discontinuous but there is no latent heat. At a
higher temperature we find the dynamical or glass transition temperature and
the corresponding discontinuous jump of the order parameter.Comment: 10 pages, 3 figure
- …