32,499 research outputs found

    Hydromechanics of low-Reynolds-number flow. Part 4. Translation of spheroids

    Get PDF
    The problem of a uniform transverse flow past a prolate spheroid of arbitrary aspect ratio at low Reynolds numbers has been analysed by the method of matched asymptotic expansions. The solution is found to depend on two Reynolds numbers, one based on the semi-minor axis b, R[sub]b = Ub/v, and the other on the semi-major axis a, R[sub]a = Ua/v (U being the free-stream velocity at infinity, which is perpendicular to the major axis of the spheroid, and v the kinematic viscosity of the fluid). A drag formula is obtained for small values of R[sub]b and arbitrary values of R[sub]a. When R[sub]a is also small, the present drag formula reduces to the Oberbeck (1876) result for Stokes flow past a spheroid, and it gives the Oseen (1910) drag for an infinitely long cylinder when R[sub]a tends to infinity. This result thus provides a clear physical picture and explanation of the 'Stokes paradox' known in viscous flow theory

    Monte-Carlo simulation of string-like colloidal assembly

    Full text link
    We study structural phase transition of polymer-grafted colloidal particles by Monte Carlo simulations on hard spherical particles. The interaction potential, which has a weak repulsive step outside the hard core, was validated with use of the self-consistent field calculations. With this potential, canonical Monte Carlo simulations have been carried out in two and three dimensions using the Metropolis algorithm. At low temperature and high density, we find that the particles start to self-assemble and finally align in strings. By analyzing the cluster size distribution and string length distribution, we construct a phase diagram and find that this string-like assembly is related to the percolation phenomena. The average string length diverges in the region where the melting transition line and the percolation transition line cross, which is similar to Ising spin systems where the percolation transition line and the order-disorder line meet on the critical point.Comment: 7 pages, 6 figures, Accepted for Europhysics Letter

    Cryogenic-coolant He-4-superconductor interaction

    Get PDF
    The thermodynamic and thermal interaction between a type 2 composite alloy and cryo-coolant He4 was studied with emphasis on post quench phenomena of formvar coated conductors. The latter were investigated using a heater simulation technique. Overall heat transfer coefficients were evaluated for the quench onset point. Heat flux densities were determined for phenomena of thermal switching between a peak and a recovery value. The study covered near saturated liquid, pressurized He4, both above and below the lambda transition, and above and below the thermodynamic critical pressure. In addition, friction coefficients for relative motion between formvar insulated conductors were determined

    Analytic Results for the Gravitational Radiation from a Class of Cosmic String Loops

    Full text link
    Cosmic string loops are defined by a pair of periodic functions a{\bf a} and b{\bf b}, which trace out unit-length closed curves in three-dimensional space. We consider a particular class of loops, for which a{\bf a} lies along a line and b{\bf b} lies in the plane orthogonal to that line. For this class of cosmic string loops one may give a simple analytic expression for the power γ\gamma radiated in gravitational waves. We evaluate γ\gamma exactly in closed form for several special cases: (1) b{\bf b} a circle traversed MM times; (2) b{\bf b} a regular polygon with NN sides and interior vertex angle π−2πM/N\pi-2\pi M/N; (3) b{\bf b} an isosceles triangle with semi-angle θ\theta. We prove that case (1) with M=1M=1 is the absolute minimum of γ\gamma within our special class of loops, and identify all the stationary points of γ\gamma in this class.Comment: 15 pages, RevTex 3.0, 7 figures available via anonymous ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-1

    Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior

    Full text link
    © 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.In the presence of prey, the marine mollusk Clione limacina exhibits search behavior, i.e., circular motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical model of the chaotic hunting behavior of Clione based on physiological in vivo and in vitroexperiments. The model includes a description of the action of the cerebral hunting interneuron on the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model neurons with Lotka–Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple static attractors that correspond to winner take all phenomena. Instead, the winnerless competition induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The origin of the chaos is related to the interaction of two clusters of receptor neurons that are described with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor neurons can drive the complex behavior of Clione observed during hunting.Support for this work came from NIH Grant No. 2R01 NS38022- 05A1. P.V. acknowledges support from MCT BFI2000-0157. M.R. acknowledges support from U.S. Department of Energy Grant No. DE-FG03-96ER14592

    Influence of an Internal Magnetar on Supernova Remnant Expansion

    Full text link
    Most of the proposed associations between magnetars and supernova remnant suffer from age problems. Usually, supernova remnants ages are determined from an approximation of the Sedov-Taylor phase relation between radius and age, for a fixed energy of the explosion ~ 10^{51} erg. Those ages do not generally agree with the characteristic ages of the (proposed) associated magnetars. We show quantitatively that, by taking into account the energy injected on the supernova remnant by magnetar spin-down, a faster expansion results, improving matches between characteristic ages and supernova remnants ages. However, the magnetar velocities inferred from observations would inviabilize some associations. Since characteristic ages may not be good age estimators, their influence on the likelihood of the association may not be as important. In this work we present simple numerical simulations of supernova remnants expansion with internal magnetars, and apply it to the observed objects. A short initial spin period, thought to be important for the very generation of the magnetic field, is also relevant for the modified expansion of the remnant. We next analyze all proposed associations case-by-case, addressing the likelyhood of each one, according to this perspective. We consider a larger explosion energy and reasses the characteristic age issue, and conclude that about 50% of the associations can be true ones, provided SGRs and AXPs are magnetars.Comment: 30 pages, AAStex, 5 figures, format fixe

    Cryogenic-coolant He4-superconductor dynamic and static interactions

    Get PDF
    A composite superconducting material (NbTi-Cu) was evaluated with emphasis on post quench solid cooling interaction regimes. The quasi-steady runs confirm the existence of a thermodynamic limiting thickness for insulating coatings. Two distinctly different post quench regimes of coated composites are shown to relate to the limiting thickness. Only one regime,, from quench onset to the peak value, revealed favorable coolant states, in particular in He2. Transient recovery shows favorable recovery times from this post quench regime (not drastically different from bare conductors) for both single coated specimens and a coated conductor bundle

    A Differential X-Ray Gunn-Peterson Test Using a Giant Cluster Filament

    Full text link
    Using CCD detectors onboard the forthcoming X-ray observatories Chandra and XMM, it is possible to devise a measurement of the absolute density of heavy elements in the hypothetical warm gas filling intercluster space. This gas may be the largest reservoir of baryonic matter in the Universe, but even its existence has not been proven observationally at low redshifts. The proposed measurement would make use of a unique filament of galaxy clusters spanning over 700 Mpc (0.1<z<0.2) along the line of sight in a small area of the sky in Aquarius. The surface density of Abell clusters there is more than 6 times the sky average. It is likely that the intercluster matter column density is enhanced by a similar factor, making its detection feasible under certain optimistic assumptions about its density and elemental abundances. One can compare photoabsorption depth, mostly in the partially ionized oxygen edges, in the spectra of clusters at different distances along the filament, looking for a systematic increase of depth with the distance. The absorption can be measured by the same detector and through the same Galactic column, hence the differential test. A CCD moderate energy resolution (about 100 eV) is adequate for detecting an absorption edge at a known redshift.Comment: Latex, 4 pages, 3 figures, uses emulateapj.sty. ApJ Letters in pres
    • …
    corecore