2,013 research outputs found
Environmental urbanization assessment using gis and multicriteria decision analysis: a case study for Denizli (Turkey) municipal area
In recent years, life quality of the urban areas is a growing interest of civil engineering. Environmental quality is essential to display the position of sustainable development and asserts the corresponding countermeasures to the protection of environment. Urban environmental quality involves multidisciplinary parameters and difficulties to be analyzed. The problem is not only complex but also involves many uncertainties, and decision-making on these issues is a challenging problem which contains many parameters and alternatives inherently. Multicriteria decision analysis (MCDA) is a very prepotent technique to solve that sort of problems, and it guides the users confidence by synthesizing that information. Environmental concerns frequently contain spatial information. Spatial multicriteria decision analysis (SMCDA) that includes Geographic Information System (GIS) is efficient to tackle that type of problems. This study has employed some geographic and urbanization parameters to assess the environmental urbanization quality used by those methods. The study area has been described in five categories: very favorable, favorable, moderate, unfavorable, and very unfavorable. The results are momentous to see the current situation, and they could help to mitigate the related concerns. The study proves that the SMCDA descriptions match the environmental quality perception in the city. © 2018 Erdal Akyol et al
Stable schedule matching under revealed preference
Baiou and Balinski (Math. Oper. Res., 27 (2002) 485) studied schedule matching where one determines the partnerships that form and how much time they spend together, under the assumption that each agent has a ranking on all potential partners. Here we study schedule matching under more general preferences that extend the substitutable preferences in Roth (Econometrica 52 (1984) 47) by an extension of the revealed preference approach in Alkan (Econom. Theory 19 (2002) 737). We give a generalization of the GaleShapley algorithm and show that some familiar properties of ordinary stable matchings continue to hold. Our main result is that, when preferences satisfy an additional property called size monotonicity, stable matchings are a lattice under the joint preferences of all agents on each side and have other interesting structural properties
A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs
To simultaneously satisfy the user needs and project-specific technical requirements, it is imperative that complex engineering systems are designed using contemporary, systematic approaches. This study presents a framework that combines Axiomatic Design and Fuzzy Analytic Hierarchy Process to ensure that designers can concurrently satisfy the functional and non-functional requirements along with the design constraints of conceptual system designs. A conceptual design case of an autonomous battery charging system for Unmanned Aerial Vehicles is presented as an illustrative case study. The results showed that the approach can aid decision-making processes by systematic evaluation and comparison of conceptual designs such that the selected solutions satisfy user needs whilst also realising both functional and non-functional requirements of the system
Solar Energy and the City’s Future Reflection
In this article, it is aimed to bring an intellectual declination to the aspects of “solar energy” deeply affecting the future of urbanization and planning activities and accordingly, the changes that may occur in urban macro form. The changes that may emerge in the forms of producing and consuming the energy naturally affects the urbanization process in addition to technological a socio-eonomical developments. The process should be evaluated through totalitarian developments. When the complexity of the matter is considered, deep theoretical declination is required. In this sudy, the references and basic resources which haven’t been explained in detail within the text for technological developments and biotope of the future were employed. The purpose of the study is to share our estimations about the demands of those developments and legal, administrative, and social behavior patterns that is required to occur accordingly not make interpretations about “technical” dimensions which require expertising on solar energy. In addition, we also aim to come up for discussion about important ontological problems we regarded vital in the relationships between energy and city. As a result of those discussions and researches, it is a beginning that is hopped to provide contributions to change the planning paradig
Deep Spin-Glass Hysteresis Area Collapse and Scaling in the Ising Model
We investigate the dissipative loss in the Ising spin glass in three
dimensions through the scaling of the hysteresis area, for a maximum magnetic
field that is equal to the saturation field. We perform a systematic analysis
for the whole range of the bond randomness as a function of the sweep rate, by
means of frustration-preserving hard-spin mean field theory. Data collapse
within the entirety of the spin-glass phase driven adiabatically (i.e.,
infinitely-slow field variation) is found, revealing a power-law scaling of the
hysteresis area as a function of the antiferromagnetic bond fraction and the
temperature. Two dynamic regimes separated by a threshold frequency
characterize the dependence on the sweep rate of the oscillating field. For
, the hysteresis area is equal to its value in the adiabatic
limit , while for it increases with the
frequency through another randomness-dependent power law.Comment: 6 pages, 6 figure
A method to assess assembly complexity of industrial products in early design phase
Complexity is one of the factors, inducing high cost, operational issues, and increased lead time for product realization and continues to pose challenges to manufacturing systems. One solution to reduce the negative impacts of complexity is its assessment, which can help designers to compare and rationalize various designs that meet the functional requirements. In this paper, a systemic approach is proposed to assess complexity of a product's assembly. The approach is based on Hückel's molecular orbital theory and defines complexity as a combination of both the complexity of product entities and their topological connections. In this model, the complexity of product entities (i.e., components and liaisons) is defined as the degree to which the entity comprises structural characteristics that lead to challenges during handling or fitting operations. The characterization of entity complexities is carried out based on the widely used DFA principles. Moreover, the proposed approach is tested on two case studies from electronics industry for its validity. The results showed that the approach can be used at initial design stages to improve both the quality and assemblability of products by reducing their complexity and accompanying risks
Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods
In the present work, the immobilization of catalase into natural active carbon and active carbon modified by hydrochloric acid was carried out. In the experimental section, the effects of pH, ionic strength andreaction temperature were chosen as parameters, with experiments performed in batch system. For the optimization of immobilization procedure, values of kinetic parameters were evaluated. It was observedthat storage and operational stabilities of the enzyme increased with immobilization. The results obtained from experiments showed that active carbon is a valuable support for the adsorption of enzymes
- …