9 research outputs found

    Outbreak of neonatal diarrhea caused by multiple genotypes of rotavirus A in a beef calves herd

    No full text
    ABSTRACT: Calf diarrhea causes substantial economic losses to beef cattle production worldwide. It is a complex multifactorial pathological condition influenced by infectious, nutritional and environmental factors. The present study focused on analyzing the pathological and molecular characterization of bovine rotavirus A (BoRVA) during a diarrhea outbreak in a beef cattle herd located in the state of Mato Grosso, central-western region, Brazil. The outbreak caused high morbidity (80%) and mortality (12%) among 1,100 calves up to 30 days of age. The BoRVA was identified in 53.3% (16/30) of the diarrheic fecal samples analyzed using the silver-stained polyacrylamide gel electrophoresis (ss-PAGE) technique. The nucleotide sequence analysis of VP7 (G genotype) and VP4 (P genotype) via RT-PCR from eight BoRVA-positive fecal samples showed the genotypes G6P[5] (n = 6), G6P[11] (n = 1) and G6P[X] (n = 1). Three calves were necropsied and the gross findings included edema and thickened, wrinkled bowel mucosa in the small intestine. Microscopic lesions were confined to the villi of the small intestine, characterized mainly by villus fusion and moderate multifocal lymphoplasmacytic enteritis. Immunohistochemical examination of three cases was positive for BoRVA. The 53.3% of the diarrheic fecal samples that were positive for BoRVA in this study suggested that RV was the etiological agent involved in this neonatal calf diarrhea outbreak

    Post-processed data and graphical tools for a CONUS-wide eddy flux evapotranspiration dataset

    No full text
    Large sample datasets of in situ evapotranspiration (ET) measurements with well documented data provenance and quality assurance are critical for water management and many fields of earth science research. We present a post-processed ET oriented dataset at daily and monthly timesteps, from 161 stations, including 148 eddy covariance flux towers, that were chosen based on their data quality from nearly 350 stations across the contiguous United States. In addition to ET, the data includes energy and heat fluxes, meteorological measurements, and reference ET downloaded from gridMET for each flux station. Data processing techniques were conducted in a reproducible manner using open-source software. Most data initially came from the public AmeriFlux network, however, several different networks (e.g., the USDA-Agricultural Research Service) and university partners provided data that was not yet public. Initial half-hourly energy balance data were gap-filled and aggregated to daily frequency, and turbulent fluxes were corrected for energy balance closure error using the FLUXNET2015/ONEFlux energy balance ratio approach. Metadata, diagnostics of energy balance, and interactive graphs of time series data are included for each station. Although the dataset was developed primarily to benchmark satellite-based remote sensing ET models of the OpenET initiative, there are many other potential uses, such as validation for a range of regional hydrologic and atmospheric models

    Characteristics, management, and outcomes of patients with left‐sided infective endocarditis complicated by heart failure: a substudy of the ESC‐EORP EURO‐ENDO (European infective endocarditis) registry

    No full text
    International audienc

    Antiinflammatory therapy with canakinumab for atherosclerotic disease

    No full text
    BACKGROUND: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. METHODS: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31). CONCLUSIONS: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. Copyright © 2017 Massachusetts Medical Society
    corecore