21 research outputs found

    Electroweak Physics at LHC

    Get PDF
    The prospects for electroweak physics at the LHC are reviewed focusing mainly on precision studies. This includes projections for measurements of the effective Z pole weak mixing angle, of top quark, W boson, and Higgs scalar properties, and new physics searches

    Re-evaluation of the LHC potential for the measurement of Mw

    Get PDF
    We present a study of the LHC sensitivity to the W boson mass based on simulation studies. We find that both experimental and phenomenological sources of systematic uncertainties can be strongly constrained with Z measurements: the lineshape is robustly predicted, and its analysis provides an accurate measurement of the detector resolution and absolute scale, while the differential cross-section analysis absorbs most of the strong interaction uncertainties. A sensitivity \delta Mw \sim 7 \MeV for each decay channel (W --> e nu, W --> mu nu), and for an integrated luminosity of 10 fb-1, appears as a reasonable goal

    Experimental Constraints on Heavy Fermions in Higgsless Models

    Full text link
    Using an effective Lagrangian approach we analyze a generic Higgsless model with composite heavy fermions, transforming as SU(2)_{L+R} Doublets. Assuming that the Standard Model fermions acquire mass through mixing with the new heavy fermions, we constrain the free parameters of the effective Lagrangian studying Flavour Changing Neutral Current processes. In so doing we obtain bounds that can be applied to a wide range of models characterized by the same fermion mixing hypothesis.Comment: 23 pages, 10 figure

    Low-mass fermiophobic charged Higgs phenomenology in two-Higgs-doublet models

    Get PDF
    After the recent discovery of a Higgs-like boson, the possibility of an enlarged scalar sector arises as a natural question. Experimental searches for charged scalars have been already performed with negative results. We analyze the phenomenology associated with a fermiophobic charged Higgs (it does not couple to fermions at tree level), in two-Higgs-doublet models. All present experimental bounds are evaded trivially in this case, and one needs to consider other decay and production channels. We study the associated production of a charged Higgs with either a W or a neutral scalar boson, and the relevant decays for a light fermiophobic charged Higgs. The interesting features of this scenario should result encouraging for the LHC collaborations to perform searches for such a particle

    Asymptotically Safe Gravitons in Electroweak Precision Physics

    Full text link
    Asymptotic safety offers a field theory based UV completion to gravity. For low Planck scales, gravitational effects on low-energy precision observables cannot be neglected. We compute the contribution to the rho parameter from asymptotically safe gravitons and find that in contrast to effective theory, constraints on models with more than three extra dimensions are significantly weakened. The relative size of the trans-Planckian contribution increases proportional to the number of extra dimensions.Comment: Published version; added references and additional minor changes including appendi

    FCNC Effects in a Minimal Theory of Fermion Masses

    Get PDF
    As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.Comment: 19 pages, 1 figur

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tan⁥ÎČ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tan⁥ÎČ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tan⁥ÎČ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ

    Neutral Higgs bosons in the MNMSSM with explicit CP violation

    Full text link
    Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark and squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases, which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of the explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.Comment: 25 pages, 8 figure

    About the relevance of the Imaginary components of the effective couplings in the Asymmetry measurements

    Get PDF
    The effect coming from imaginary parts of effective couplings in the e+e−e^+ e^- asymmetries is investigated. It is shown that for the present level of experimental accuracy, in some asymmetries the imaginary parts of the effective couplings cannot be neglected and moreover that the use of different prescriptions on how to handle them in quoting just real effective couplings from the data may produce sizable differences. A definition of the real effective couplings specifying how to handle the imaginary parts is advocated.Comment: 19 pages, IFAE-UAB/94-0
    corecore