1,314 research outputs found
Hyperbolic Scar Patterns in Phase Space
We develop a semiclassical approximation for the spectral Wigner and Husimi
functions in the neighbourhood of a classically unstable periodic orbit of
chaotic two dimensional maps. The prediction of hyperbolic fringes for the
Wigner function, asymptotic to the stable and unstable manifolds, is verified
computationally for a (linear) cat map, after the theory is adapted to a
discrete phase space appropriate to a quantized torus. The characteristic
fringe patterns can be distinguished even for quasi-energies where the fixed
point is not Bohr-quantized. The corresponding Husimi function dampens these
fringes with a Gaussian envelope centered on the periodic point. Even though
the hyperbolic structure is then barely perceptible, more periodic points stand
out due to the weakened interference.Comment: 12 pages, 10 figures, Submited to Phys. Rev.
Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation. © 2018 Cardona et al
Modelo cinemático de un robot móvil tipo diferencial y navegación a partir de la estimación odométrica
El presente articulo describe la implementación de estrategias de navegación de un robot móvil tipo diferencial a partir de la estimación odométrica, y su implementación utilizando Hardware reconfigurable (FPGAS). Se muestra la potencialidad de las FPGAS en la implementación de aplicaciones de robótica móvil. Se muestran los resultados de algunos experimentos realizados con la plataforma, y los errores odométricos de estos, los cuales se utilizaran para generación y corrección de trayectorias
The Sun's position in the sky
We express the position of the Sun in the sky as a function of time and the
observer's geographic coordinates. Our method is based on applying rotation
matrices to vectors describing points on the celestial sphere. We also derive
direct expressions, as functions of date of the year and geographic latitude,
for the duration of daylight, the maximum and minimum altitudes of the Sun, and
the cardinal directions to sunrise and sunset. We discuss how to account for
the eccentricity of the earth's orbit, the precessions of the equinoxes and the
perihelion, the size of the solar disk, and atmospheric refraction. We
illustrate these results by computing the dates of "Manhattanhenge" (when
sunset aligns with the east-west streets on the main traffic grid for
Manhattan, in New York City), by plotting the altitude of the Sun over
representative cities as a function of time, and by showing plots ("analemmas")
for the position of the Sun in the sky at a given hour of the day.Comment: 19 pages, 16 figures. v3: Replaced to match published version and to
re-package Mathematica notebook as an ancillary fil
Scalar Field Dark Matter: behavior around black holes
We present the numerical evolution of a massive test scalar fields around a
Schwarzschild space-time. We proceed by using hyperboloidal slices that
approach future null infinity, which is the boundary of scalar fields, and also
demand the slices to penetrate the event horizon of the black hole. This
approach allows the scalar field to be accreted by the black hole and to escape
toward future null infinity. We track the evolution of the energy density of
the scalar field, which determines the rate at which the scalar field is being
diluted. We find polynomial decay of the energy density of the scalar field,
and use it to estimate the rate of dilution of the field in time. Our findings
imply that the energy density of the scalar field decreases even five orders of
magnitude in time scales smaller than a year. This implies that if a
supermassive black hole is the Schwarzschild solution, then scalar field dark
matter would be diluted extremely fastComment: 15 pages, 21 eps figures. Appendix added, accepted for publication in
JCA
On the symmetry of the vacuum in theories with spontaneous symmetry breaking
We review the usual account of the phenomena of spontaneous symmetry breaking
(SSB), pointing out the common misunderstandings surrounding the issue, in
particular within the context of quantum field theory. In fact, the common
explanations one finds in this context, indicate that under certain conditions
corresponding to the situation called SSB, the vacuum of the theory does not
share the symmetries of the Lagrangian. We explain in detail why this statement
is incorrect in general, and in what limited set of circumstances such
situation could arise. We concentrate on the case of global symmetries, for
which we found no satisfactory exposition in the existing literature, and
briefly comment on the case of gauge symmetries where, although insufficiently
publicized, accurate and complete descriptions exist. We briefly discuss the
implications for the phenomenological manifestations usually attributed to the
phenomena of spontaneous symmetry breaking, analyzing which might be affected
by our analysis and which are not. In particular we describe the mass
generation mechanism in a fully symmetric scheme (i.e., with a totally
symmetric vacuum), and briefly discuss the implications of this analysis to the
problem of formation of topological defects in the early universe
El mazateco de Oaxaca
El proyecto analiza la variación y el cambio en la fonología, léxico, morfología y sintaxis del mazateco que se habla en las Regiones de la Cuenca y la Cañada (Santo Domingo del Río, Xalapa de Díaz, Huautla de Jiménez y Santa María Asunción) del estado de Oaxaca de la República Mexican
Non-minimal couplings, quantum geometry and black hole entropy
The black hole entropy calculation for type I isolated horizons, based on
loop quantum gravity, is extended to include non-minimally coupled scalar
fields. Although the non-minimal coupling significantly modifies quantum
geometry, the highly non-trivial consistency checks for the emergence of a
coherent description of the quantum horizon continue to be met. The resulting
expression of black hole entropy now depends also on the scalar field precisely
in the fashion predicted by the first law in the classical theory (with the
same value of the Barbero-Immirzi parameter as in the case of minimal
coupling).Comment: 14 pages, no figures, revtex4. Section III expanded and typos
correcte
Chicamocha Canyon Geopark project: A novel strategy for the socio-economic development of Santander (Colombia) through geoeducation, geotourism and geoconservation
The proposed Chicamocha Canyon Geopark project is starting its way for nomination as a UNESCO Global Geopark under the recognition of the Global Geoparks Network. This paper aims to present the justifications of establishing this geopark. It also assesses the potential role of a geopark figure in Santander as an urgent measure to promote the geoconservation of the Chicamocha Canyon territory. The success of this project will not only improve the living conditions of local communities, but also will be a reference model in terms of geological conservation at national and international level. The Chicamocha Canyon, where is proposed to develop this project, has a great potential for the development of the tourism industry due to climatic conditions of the region, besides possessing a rich cultural and natural heritage that needs to be enhanced and protected. Undoubtedly, this initiative should satisfy all the requirements to be a UNESCO Global Geopark, which include a delimited area that defines a territory, the occurrence of geological features of international importance with scientific, educational and aesthetic value, the presence of other types of heritage such as archaeological sites, as well as a proper access infrastructure that favors the socio-economic development of the region. In order to guarantee the successful consolidation of the proposed geopark within the defined territory, this initiative must count the strong support of the local communities and must involve stakeholders such as government authorities, academic and research institutions, and local businesses
Non-minimally coupled scalar fields and isolated horizons
The isolated horizon framework is extended to include non-minimally coupled
scalar fields. As expected from the analysis based on Killing horizons, entropy
is no longer given just by (a quarter of) the horizon area but also depends on
the scalar field. In a subsequent paper these results will serve as a point of
departure for a statistical mechanical derivation of entropy using quantum
geometry.Comment: 14 pages, 1 figure, revtex4. References and minor clarifications
adde
- …