4 research outputs found

    Semiempirical in-cylinder pressure based model for NOx prediction oriented to control applications

    Full text link
    This work describes the development of a fast NO X predictive model oriented to engine control in diesel engines. The in-cylinder pressure is the only instantaneous input signal required, along with several mean variables that are available in the ECU during normal engine operation. The proposed model is based on the instantaneous evolution of the heat release rate and the adiabatic flame temperature (both obtained among other parameters from the in-cylinder pressure evolution). Corrections for considering the NO X reduction due to the re-burning mechanism are also included. Finally, the model is used for providing a model-based correction of tabulated values for the NO X emission at the reference conditions. The model exhibits a good behaviour when varying exhaust gas recirculation rate, boost pressure and intake temperature, while changes in the engine speed and injection settings are considered in the tabulated values. Concerning the calculation time, the model is optimised by proposing simplified sub-models to calculate the heat release and the adiabatic flame temperature. The final result is suitable for real time applications since it takes less than a cycle to complete the NO X prediction.Guardiola GarcĂ­a, C.; LĂłpez SĂĄnchez, JJ.; MartĂ­n DĂ­az, J.; GarcĂ­a Sarmiento, D. (2011). Semiempirical in-cylinder pressure based model for NOx prediction oriented to control applications. Applied Thermal Engineering. 31(16):3275-3286. doi:10.1016/j.applthermaleng.2011.05.048S32753286311

    Exploring Changes in Quasar Spectral Energy Distributions across C iv Parameter Space

    Get PDF
    Abstract We examine the UV/X-ray properties of 1378 quasars in order to link empirical correlations to theoretical models of the physical mechanisms dominating quasars as a function of mass and accretion rate. The clarity of these correlations is improved when (1) using C iv broad emission line equivalent width (EQW) and blueshift (relative to systemic) values calculated from high signal-to-noise ratio reconstructions of optical/UV spectra and (2) removing quasars expected to be absorbed based on their UV/X-ray spectral slopes. In addition to using the traditional C iv parameter space measures of C iv EQW and blueshift, we define a “C iv ∄ distance” along a best-fit polynomial curve that incorporates information from both C iv parameters. We find that the C iv ∄ distance is linearly correlated with both the optical-to-X-ray slope, α ox, and broad-line He ii EQW, which are known spectral energy distribution indicators, but does not require X-ray or high spectral resolution UV observations to compute. The C iv ∄ distance may be a better indicator of the mass-weighted accretion rate, parameterized by L/L Edd, than the C iv EQW or blueshift alone, as those relationships are known to break down at the extrema. Conversely, there is only a weak correlation with the X-ray energy index (Γ), an alternate L/L Edd indicator. We find no X-ray or optical trends in the direction perpendicular to the C iv distance that could be used to reveal differences in accretion disk, wind, or corona structure that could be widening the C iv EQW–blueshift distribution. A different parameter (such as metallicity) not traced by these data must come into play.</jats:p

    Cosmic X-ray surveys of distant active galaxies

    No full text
    corecore