144 research outputs found

    Core outcome domains for early-phase clinical trials of sound-, psychology-, and pharmacology-based interventions to manage chronic subjective tinnitus in adults: the COMIT'ID study protocol for using a Delphi process and face-to-face meetings to establish consensus

    Get PDF
    Background: The reporting of outcomes in clinical trials of subjective tinnitus indicates that many different tinnitus-related complaints are of interest to investigators, from perceptual attributes of the sound (e.g. loudness) to psychosocial impacts (e.g. quality of life). Even when considering one type of intervention strategy for subjective tinnitus, there is no agreement about what is critically important for deciding whether a treatment is effective. The main purpose of this observational study is therefore to develop Core Outcome Domain Sets for the three different intervention strategies (sound, psychological, and pharmacological) for adults with chronic subjective tinnitus that should be measured and reported in every clinical trial of these interventions. Secondary objectives are to identify the strengths and limitations of our study design for recruiting and reducing attrition of participants, and to explore uptake of the core outcomes. Methods: The โ€˜Core Outcome Measures in Tinnitus: International Delphiโ€™ (COMITโ€™ID) study will use a mixed methods approach that incorporates input from healthcare users at the pre-Delphi stage, a modified three round Delphi survey and final consensus meetings (one for each intervention). The meetings will generate recommendations by stakeholder representatives on agreed Core Outcome Domain Sets specific to each intervention. A subsequent step will establish a common cross-cutting Core Outcome Domain Set by identifying the common outcome domains included in all three intervention-specific Core Outcome Domain Sets. To address the secondary objectives, we will gather feedback from participants about their experience of taking part in the Delphi process. We aspire to conduct an observational cohort study to evaluate uptake of the core outcomes in published studies at 7 years following core outcome set publication. Discussion: The COMITโ€™ID study aims to develop a Core Outcome Domain Set that are agreed as critically important for deciding whether a treatment for subjective tinnitus is effective. Such a recommendation would help to standardise future clinical trials worldwide and so we will determine if participation increases use of the core outcome set in the long term. Trial registration: This project has been registered in the database of the Core Outcome Measures in Effectiveness Trials (COMET) initiative

    Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection

    Get PDF
    Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system

    Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    Get PDF
    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level

    Potent Neutralization of Influenza A Virus by a Single-Domain Antibody Blocking M2 Ion Channel Protein

    Get PDF
    Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH) libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses

    Pooling/bootstrap-based GWAS (pbGWAS) identifies new loci modifying the age of onset in PSEN1 p.Glu280Ala Alzheimer\u27s disease

    Get PDF
    The literature on GWAS (genome-wide association studies) data suggests that very large sample sizes (for example, 50,000 cases and 50,000 controls) may be required to detect significant associations of genomic regions for complex disorders such as Alzheimer\u27s disease (AD). Because of the challenges of obtaining such large cohorts, we describe here a novel sequential strategy that combines pooling of DNA and bootstrapping (pbGWAS) in order to significantly increase the statistical power and exponentially reduce expenses. We applied this method to a very homogeneous sample of patients belonging to a unique and clinically well-characterized multigenerational pedigree with one of the most severe forms of early onset AD, carrying the PSEN1 p.Glu280Ala mutation (often referred to as E280A mutation), which originated as a consequence of a founder effect. In this cohort, we identified novel loci genome-wide significantly associated as modifiers of the age of onset of AD (CD44, rs187116, P=1.29 _ 10?12; NPHP1, rs10173717, P=1.74 _ 10?12; CADPS2, rs3757536, P=1.54 _ 10?10; GREM2, rs12129547, P=1.69 _ 10?13, among others) as well as other loci known to be associated with AD. Regions identified by pbGWAS were confirmed by subsequent individual genotyping. The pbGWAS methodology and the genes it targeted could provide important insights in determining the genetic causes of AD and other complex conditions

    Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Get PDF
    BACKGROUND:Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. METHODOLOGY/PRINCIPAL FINDINGS:We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T-->S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. CONCLUSIONS/SIGNIFICANCE:The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features

    Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel

    Get PDF
    The envelope (E) protein from coronaviruses is a small polypeptide that contains at least one ฮฑ-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA), but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV) that the transmembrane domain of E protein (ETM) forms pentameric ฮฑ-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular ฮฑ-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293) cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA), but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target
    • โ€ฆ
    corecore