50 research outputs found

    Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance

    Get PDF
    In Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) α-synuclein (αS) pathology is seen that displays a predictable topographic distribution. There are two staging/categorization systems, i.e. Braak’s and McKeith’s, currently in use for the assessment of αS pathology. The aim of these diagnostic strategies in pathology is, in addition to assess the stage/severity of pathology, to assess the probabilities of the related clinical symptomatology i.e. dementia and extrapyramidal symptoms (EPS). Herein, we assessed the applicability of these two staging/categorization systems and the frequency of dementia and EPS in a cohort of 226 αS-positive-subjects. These subject were selected from a large autopsy sample (n = 1,720), irrespective of the clinical presentation, based on the detection of αS-immunoreactivity (IR) in one of the most vulnerable nuclei; in the dorsal motor nucleus of vagus, substantia nigra and basal forebrain. The frequency of αS-IR lesions in this large cohort was 14% (248 out of 1,720). If applicable, each of the 226 subjects with all required material available was assigned a neuropathological stage/category of PD/DLB and finally the neuropathological data was analyzed in relation to dementia and EPS. 83% of subjects showed a distribution pattern of αS-IR that was compatible with the current staging/categorization systems. Around 55% of subjects with widespread αS pathology (Braak’s PD stages 5–6) lacked clinical signs of dementia or EPS. Similarly, in respect to those subjects that fulfilled the McKeith criteria for diffuse neocortical category and displaying only mild concomitant Alzheimer’s disease-related pathology, only 48% were demented and 54% displayed EPS. It is noteworthy that some subjects (17%) deviated from the suggested caudo-rostral propagation suggesting alternative routes of progression, perhaps due to concomitant diseases and genetic predisposition. In conclusion, our results do indeed confirm that current staging/categorization systems can readily be applied to most of the subjects with αS pathology. However, finding that around half of the subjects with abundant αS pathology remain neurologically intact is intriguing and raises the question whether we do assess the actual disease process

    Identification of novel small molecules that inhibit STAT3-dependent transcription and function

    Get PDF
    Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents

    Identification of Combinatorial Patterns of Post-Translational Modifications on Individual Histones in the Mouse Brain

    Get PDF
    Post-translational modifications (PTMs) of proteins are biochemical processes required for cellular functions and signalling that occur in every sub-cellular compartment. Multiple protein PTMs exist, and are established by specific enzymes that can act in basal conditions and upon cellular activity. In the nucleus, histone proteins are subjected to numerous PTMs that together form a histone code that contributes to regulate transcriptional activity and gene expression. Despite their importance however, histone PTMs have remained poorly characterised in most tissues, in particular the brain where they are thought to be required for complex functions such as learning and memory formation. Here, we report the comprehensive identification of histone PTMs, of their combinatorial patterns, and of the rules that govern these patterns in the adult mouse brain. Based on liquid chromatography, electron transfer, and collision-induced dissociation mass spectrometry, we generated a dataset containing a total of 10,646 peptides from H1, H2A, H2B, H3, H4, and variants in the adult brain. 1475 of these peptides carried one or more PTMs, including 141 unique sites and a total of 58 novel sites not described before. We observed that these PTMs are not only classical modifications such as serine/threonine (Ser/Thr) phosphorylation, lysine (Lys) acetylation, and Lys/arginine (Arg) methylation, but also include several atypical modifications such as Ser/Thr acetylation, and Lys butyrylation, crotonylation, and propionylation. Using synthetic peptides, we validated the presence of these atypical novel PTMs in the mouse brain. The application of data-mining algorithms further revealed that histone PTMs occur in specific combinations with different ratios. Overall, the present data newly identify a specific histone code in the mouse brain and reveal its level of complexity, suggesting its potential relevance for higher-order brain functions

    Aggressive versus symptom-guided drainage of malignant pleural effusion via indwelling pleural catheters (AMPLE-2): an open-label randomised trial

    No full text
    BACKGROUND:Indwelling pleural catheters are an established management option for malignant pleural effusion and have advantages over talc slurry pleurodesis. The optimal regimen of drainage after indwelling pleural catheter insertion is debated and ranges from aggressive (daily) drainage to drainage only when symptomatic. METHODS:AMPLE-2 was an open-label randomised trial involving 11 centres in Australia, New Zealand, Hong Kong, and Malaysia. Patients with symptomatic malignant pleural effusions were randomly assigned (1:1) to the aggressive (daily) or symptom-guided drainage groups for 60 days and minimised by cancer type (mesothelioma vs others), performance status (Eastern Cooperative Oncology Group [ECOG] score 0-1 vs ≥2), presence of trapped lung, and prior pleurodesis. Patients were followed up for 6 months. The primary outcome was mean daily breathlessness score, measured by use of a 100 mm visual analogue scale during the first 60 days. Secondary outcomes included rates of spontaneous pleurodesis and self-reported quality-of-life measures. Results were analysed by an intention-to-treat approach. This trial is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12615000963527. FINDINGS:Between July 20, 2015, and Jan 26, 2017, 87 patients were recruited and randomly assigned to the aggressive (n=43) or symptom-guided (n=44) drainage groups. The mean daily breathlessness scores did not differ significantly between the aggressive and symptom-guided drainage groups (geometric means 13·1 mm [95% CI 9·8-17·4] vs 17·3 mm [13·0-22·0]; ratio of geometric means 1·32 [95% CI 0·88-1·97]; p=0·18). More patients in the aggressive group developed spontaneous pleurodesis than in the symptom-guided group in the first 60 days (16 [37·2%] of 43 vs five [11·4%] of 44, p=0·0049) and at 6 months (19 [44·2%] vs seven [15·9%], p=0·004; hazard ratio 3·287 [95% CI 1·396-7·740]; p=0·0065). Patient-reported quality-of-life measures, assessed with EuroQoL-5 Dimensions-5 Levels (EQ-5D-5L), were better in the aggressive group than in the symptom-guided group (estimated means 0·713 [95% CI 0·647-0·779] vs 0·601 [0·536-0·667]). The estimated difference in means was 0·112 (95% CI 0·0198-0·204; p=0·0174). Pain scores, total days spent in hospital, and mortality did not differ significantly between groups. Serious adverse events occurred in 11 (25·6%) of 43 patients in the aggressive drainage group and in 12 (27·3%) of 44 patients in the symptom-guided drainage group, including 11 episodes of pleural infection in nine patients (five in the aggressive group and six in the symptom-guided drainage group). INTERPRETATION:We found no differences between the aggressive (daily) and the symptom-guided drainage regimens for indwelling pleural catheters in providing breathlessness control. These data indicate that daily indwelling pleural catheter drainage is more effective in promoting spontaneous pleurodesis and might improve quality of life. FUNDING:Cancer Council of Western Australia and the Sir Charles Gairdner Research Advisory Group.Sanjeevan Muruganandan, Maree Azzopardi, Deirdre B Fitzgerald, Ranjan Shrestha, Benjamin C H Kwan ... Phan T Nguyen ... et al

    Engineering and functional analysis of mitotic kinases through chemical genetics

    No full text
    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky “gatekeeper” residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells
    corecore