7,218 research outputs found
Nuclei in Strongly Magnetised Neutron Star Crusts
We discuss the ground state properties of matter in outer and inner crusts of
neutron stars under the influence of strong magnetic fields. In particular, we
demonstrate the effects of Landau quantization of electrons on compositions of
neutron star crusts. First we revisit the sequence of nuclei and the equation
of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS)
model in the presence of strong magnetic fields and most recent versions of the
theoretical and experimental nuclear mass tables. Next we deal with nuclei in
the inner crust. Nuclei which are arranged in a lattice, are immersed in a
nucleonic gas as well as a uniform background of electrons in the inner crust.
The Wigner-Seitz approximation is adopted in this calculation and each lattice
volume is replaced by a spherical cell. The coexistence of two phases of
nuclear matter - liquid and gas, is considered in this case. We obtain the
equilibrium nucleus corresponding to each baryon density by minimizing the free
energy of the cell. We perform this calculation using Skyrme nucleon-nucleon
interaction with different parameter sets. We find nuclei with larger mass and
charge numbers in the inner crust in the presence of strong magnetic fields
than those of the zero field case for all nucleon-nucleon interactions
considered here. However, SLy4 interaction has dramatic effects on the proton
fraction as well as masses and charges of nuclei. This may be attributed to the
behaviour of symmetry energy with density in the sub-saturation density regime.
Further we discuss the implications of our results to shear mode oscillations
of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South
Africa in November, 2011 and to be published in a book by Springer Verla
Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk
It is well recognised that data mining and statistical analysis pose a
serious treat to privacy. This is true for financial, medical, criminal and
marketing research. Numerous techniques have been proposed to protect privacy,
including restriction and data modification. Recently proposed privacy models
such as differential privacy and k-anonymity received a lot of attention and
for the latter there are now several improvements of the original scheme, each
removing some security shortcomings of the previous one. However, the challenge
lies in evaluating and comparing privacy provided by various techniques. In
this paper we propose a novel entropy based security measure that can be
applied to any generalisation, restriction or data modification technique. We
use our measure to empirically evaluate and compare a few popular methods,
namely query restriction, sampling and noise addition.Comment: 20 pages, 4 figure
FAM20C Functions Intracellularly Within Both Ameloblasts and Odontoblasts In Vivo
FAM20C, also known as Golgi casein kinase (G‐CK), is proposed to be the archetype for a family of secreted kinases that phosphorylate target proteins in the Golgi and in extracellular matrices, but FAM20C serving an extracellular function is controversial. FAM20C phosphorylates secretory calcium‐binding phosphoproteins (SCPPs), which are associated with the evolution of biomineralization in vertebrates. Current models of biomineralization assume SCPP proteins are secreted as phosphoproteins and their phosphates are essential for protein conformation and function. It would be a radical departure from current theories if proteins in mineralizing matrices were dephosphorylated as part of the mineralization mechanism and rephosphorylated in the extracellular milieu by FAM20C using ATP. To see if such mechanisms are possible in the formation of dental enamel, we tested the hypothesis that FAM20C is secreted by ameloblasts and accumulates in the enamel extracellular matrix during tooth development. FAM20C localization was determined by immunohistochemistry in day 5 mouse incisors and molars and by Western blot analyses of proteins extracted from pig enamel organ epithelia (EOE) and enamel shavings. FAM20C localized intracellularly within ameloblasts and odontoblasts in a pattern consistent with Golgi localization. Western blots detected FAM20C in the EOE extracts but not in the enamel matrix. We conclude that FAM20C is not a constituent of the enamel extracellular matrix and functions intracellularly within ameloblasts. © 2013 American Society for Bone and Mineral Research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101850/1/jbmr1990.pd
On the stability of high-speed milling with spindle speed variation
Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining
Leptonic Decays of Heavy Quarks on the Lattice
The status of lattice calculations of heavy-light decay constants and of the
parameter is reviewed. After describing the lattice approach to heavy
quark systems, the main results are discussed, with special emphasis on the
systematic errors in present lattice calculations. A detailed analysis of the
continuum limit for decay constants is performed. The implications of lattice
results on studies of CP violation in the Standard Model are discussed.Comment: Invited review to be published in Int. J. Mod. Phys. A, 63 pages,
LaTeX, ijmpa1.sty (included), 8 postscript figure
Numerical study of chiral symmetry breaking in non-Abelian gauge theory with background magnetic field
We investigate the effect of a uniform background magnetic field on the
chiral symmetry breaking in SU(2) Yang-Mills theory on the lattice. We observe
that the chiral condensate grows linearly with the field strength B up to
\sqrt{e B} = 3 GeV as predicted by chiral perturbation theory for full QCD. As
the temperature increases the coefficient in front of the linear term gets
smaller. In the magnetic field near-zero eigenmodes of the Dirac operator tend
to have more regular structure with larger (compared to zero-field case)
Hausdorff dimensionality. We suggest that the delocalization of near-zero
eigenmodes plays a crucial role in the enhancement of the chiral symmetry
breaking.Comment: 6 pages, Elsevier article style, 5 figures; revision: references and
discussions added, published versio
Accreting Protoplanets in the LkCa 15 Transition Disk
Exoplanet detections have revolutionized astronomy, offering new insights
into solar system architecture and planet demographics. While nearly 1900
exoplanets have now been discovered and confirmed, none are still in the
process of formation. Transition discs, protoplanetary disks with inner
clearings best explained by the influence of accreting planets, are natural
laboratories for the study of planet formation. Some transition discs show
evidence for the presence of young planets in the form of disc asymmetries or
infrared sources detected within their clearings, as in the case of LkCa 15.
Attempts to observe directly signatures of accretion onto protoplanets have
hitherto proven unsuccessful. Here we report adaptive optics observations of
LkCa 15 that probe within the disc clearing. With accurate source positions
over multiple epochs spanning 2009 - 2015, we infer the presence of multiple
companions on Keplerian orbits. We directly detect H{\alpha} emission from the
innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into
the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item
The role of the right temporoparietal junction in perceptual conflict: detection or resolution?
The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict
- …
