218 research outputs found

    T Helper 1–Inducing Adjuvant Protects against Experimental Paracoccidioidomycosis

    Get PDF
    Immunostimulatory therapy is a promising approach to improving the treatment of systemic fungal infections such as paracoccidioidomycosis (PCM), whose drug therapy is usually prolonged and associated with toxic side effects and relapses. The current study was undertaken to determine if the injection of a T helper (Th) 1–stimulating adjuvant in P. brasiliensis–infected mice could have a beneficial effect on the course of experimental PCM. For this purpose, mice were infected and treated with complete Freund's adjuvant (CFA), a well-established Th1 experimental inductor, or incomplete Freund's adjuvant (IFA - control group) on day 20 postinfection. Four weeks after treatment, the CFA-treated mice presented a mild infection in the lungs characterized by absence of epithelioid cell granulomas and yeast cells, whereas the control mice presented multiple sites of focal epithelioid granulomas with lymphomonocytic halos circumscribing a high number of viable and nonviable yeast cells. In addition, CFA administration induced a 2.4 log reduction (>99%) in the fungal burden when compared to the control group, and led to an improvement of immune response, reversing the immunosuppression observed in the control group. The immunotherapy with Th1-inducing adjuvant, approved to be used in humans, might be a valuable tool in the treatment of PCM and potentially useful to improve the clinical cure rate in humans

    Erratum: Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

    Get PDF
    1 Exposure calculation Due to a mistake in the numerical integration following eq. (6.2) of the original article [1], the exposure shown in figure 5 of the original article was incorrect. The correct exposure is shown in figure 1. 2 Upper limits on the integral photon flux and fraction The incorrect exposure affects the calculation of the upper limits on the integral photon flux following eq. (6.1) of the original article. The correct values for the upper limits are 0.038, 0.010, 0.009, 0.008 and 0.007 km−2 sr−1 yr−1 for threshold energies of 1, 2, 3, 5 and 10 EeV. The correct values for the upper limits on the integral photon fraction subsequently derived are 0.14 %, 0.17 %, 0.42 %, 0.86 % and 2.9 % for the same threshold energies. 3 Author list The author list of this erratum also corrects a mistake made in the original article, where F. Zuccarello was missing and Z. Zong was listed twice.Fil: Aab, A.. Radboud Universiteit Nijmegen; Países BajosFil: Abreu, P.. Instituto Superior Tecnico; PortugalFil: Aglietta, M.. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Al Samarai, I.. Laboratoire de Physique Nucléaire Et de Hautes Energies; FranciaFil: Albuquerque, I. F. M.. Universidade de Sao Paulo; BrasilFil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Almela, A.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Alvarez Castillo, J.. Universidad Nacional Autónoma de México; MéxicoFil: Alvarez-Muñiz, J.. Universidad de Santiago de Compostela; EspañaFil: Anastasi, G. A.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Anchordoqui, Luis A.. City University of New York; Estados UnidosFil: Andrada, B.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Andringa, S.. Instituto Superior Tecnico; PortugalFil: Aramo, C.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Arqueros, F.. Universidad Complutense de Madrid; EspañaFil: Arsene, N.. University of Bucharest; RumaniaFil: Asorey, Hernán Gonzalo. Universidad Industrial Santander; Colombia. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Assis, P.. Instituto Superior Tecnico; PortugalFil: Aublin, J.. Laboratoire de Physique Nucléaire Et de Hautes Energies; FranciaFil: Avila, G.. Observatorio Pierre Auger And Comisión Nacional de Energía Atómica; Argentina. Observatorio Pierre Auger; ArgentinaFil: Badescu, A. M.. University Politehnica Of Bucharest; RumaniaFil: Balaceanu, A.. “Horia Hulubei” National Institute for Physics and Nuclear Engineering; RumaniaFil: Barreira Luz, R. J.. Instituto Superior Tecnico; PortugalFil: Beatty, J. J.. Ohio State University; Estados UnidosFil: Becker, K. H.. Bergische Universität Wuppertal; AlemaniaFil: Bellido, J.A.. University of Adelaide; AustraliaFil: Berat, C.. Université Grenoble Alpes; FranciaFil: Bertaina, M. E.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sciutto, Sergio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentin

    Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

    Get PDF
    We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5⋅1018 eV, i.e.~the region of the all-particle spectrum above the so-called "ankle" feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.Fil: Aab, A.. Radboud Universiteit Nijmegen; Países BajosFil: Abreu, P.. Universidade de Lisboa; PortugalFil: Aglietta, M.. Istituto Nazionale di Astrofisica; ItaliaFil: Al Samarai, I.. Universite de Paris VI. Institut des Nanosciences de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Albuquerque, I. F. M.. Universidade de Sao Paulo; BrasilFil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Almela, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Alvarez Castillo, J.. Universidad Nacional Autónoma de México; MéxicoFil: Alvarez Muñiz, J.. Universidad de Santiago de Compostela; EspañaFil: Anastasi, G. A.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Anchordoqui, Luis A.. City University of New York; Estados UnidosFil: Andrada, Betiana Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Andringa, S.. Universidade Nova de Lisboa; PortugalFil: Aramo, C.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Arqueros, F.. Universidad Complutense de Madrid; EspañaFil: Arsene, N.. University of Bucharest; RumaniaFil: Asorey, Hernán Gonzalo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Universidad Industrial de Santander; ColombiaFil: Assis, P.. Universidade de Lisboa; PortugalFil: Aublin, J.. Université Paris 6; Francia. Université Paris 7; Francia. Centre National de la Recherche Scientifique; FranciaFil: Avila, G.. Observatorio Pierre Auger; ArgentinaFil: Badescu, A. M.. Observatorio Pierre Auger; ArgentinaFil: Balaceanu, A.. “Horia Hulubei” National Institute for Physics and Nuclear Engineering; RumaniaFil: Luz Barreira, R. J.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Beatty, J. J.. Ohio State University; Estados UnidosFil: Figueira, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Platino, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Wundheiler, Brian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Wahlberg, Hernan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Mollerach, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Biermann, P. L.. Max-Planck-Institut f¨ur Radioastronomie; Alemani

    Erratum: Search for photons with energies above 10\u3csup\u3e18\u3c/sup\u3e eV using the hybrid detector of the Pierre Auger Observatory (Journal of Cosmology and Astroparticle Physics (2017) 4 (9) DOI: 10.1088/1475-7516/2017/04/009)

    Get PDF
    1 Exposure calculation Due to a mistake in the numerical integration following eq. (6.2) of the original article [1], the exposure shown in figure 5 of the original article was incorrect. The correct exposure is shown in figure 1. 2 Upper limits on the integral photon flux and fraction The incorrect exposure affects the calculation of the upper limits on the integral photon flux following eq. (6.1) of the original article. The correct values for the upper limits are 0.038, 0.010, 0.009, 0.008 and 0.007 km−2 sr−1 yr−1 for threshold energies of 1, 2, 3, 5 and 10 EeV. The correct values for the upper limits on the integral photon fraction subsequently derived are 0.14 %, 0.17 %, 0.42 %, 0.86 % and 2.9 % for the same threshold energies. 3 Author list The author list of this erratum also corrects a mistake made in the original article, where F. Zuccarello was missing and Z. Zong was listed twice

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 8080^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×1051.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×1032.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    corecore