32 research outputs found
Job Strain, Health and Sickness Absence: Results from the Hordaland Health Study
MW and SBH are funded by NSW Health. M. Henderson and M. Hotopf were supported by the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kingâs College London. AM and SO were funded by the Norwegian Research Council
Free-Space distribution of entanglement and single photons over 144 km
Quantum Entanglement is the essence of quantum physics and inspires
fundamental questions about the principles of nature. Moreover it is also the
basis for emerging technologies of quantum information processing such as
quantum cryptography, quantum teleportation and quantum computation. Bell's
discovery, that correlations measured on entangled quantum systems are at
variance with a local realistic picture led to a flurry of experiments
confirming the quantum predictions. However, it is still experimentally
undecided whether quantum entanglement can survive global distances, as
predicted by quantum theory. Here we report the violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality measured by two observers
separated by 144 km between the Canary Islands of La Palma and Tenerife via an
optical free-space link using the Optical Ground Station (OGS) of the European
Space Agency (ESA). Furthermore we used the entangled pairs to generate a
quantum cryptographic key under experimental conditions and constraints
characteristic for a Space-to-ground experiment. The distance in our experiment
exceeds all previous free-space experiments by more than one order of magnitude
and exploits the limit for ground-based free-space communication; significantly
longer distances can only be reached using air- or space-based platforms. The
range achieved thereby demonstrates the feasibility of quantum communication in
space, involving satellites or the International Space Station (ISS).Comment: 10 pages including 2 figures and 1 table, Corrected typo
Optimization of Fabrication Technique to Prepare Acacia Wood Reinforced Bio-Composites
This chapter discuss the preparation and optimization of wood polymer composites based on the impregnation by polymer and nanoclay. Wood impregnation is one of the basic and most frequently used techniques to enhance the wood properties. This fabrication technique offers a wide range of applications depending on type of impregnants applied. Impregnation could make the wood less flammable, more dimensionally stable, more resistant to decay, harder, stronger, and more stable against UV rays. Softwood (Acacia) was impregnated with acrylonitrile, poly(vinyl) alcohol and organically nanoclay. The specimen preparation was carried out using the vacuum-chamber in a laboratory scale. The physical and mechanical properties of the modified wood were analyzed through Tensile and Flexural tests, SEM, FTIR, TGA and DSC. Mechanical test results shown that Tensile and Flexural strength have improvements with the addition of the nanofillers. The FTIR test shown that the chemical bonding between PVA into the wood cell would certainly enhance the matrix adhesion and contribute to its property enhancement. SEM illustrate the samples surface morphology which confirm the impregnation of the specimen. TGA results shown the additives impregnate into the wood component increase the thermal stability compared to the raw wood. DSC results indicate the impregnate wood has a higher melting temperature compared to the raw wood, due to existing of the polymer and nanoclay interfacial bonding among cell wall of the wood. Response surface methodology (RSM) was used to optimize the conditions for the preparation of wood composites. The design experiment was carried out using Design Expert 11