133 research outputs found
Neuropathic Pain Phenotype Does Not Involve the NLRP3 Inflammasome and Its End Product Interleukin-1β in the Mice Spared Nerve Injury Model.
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS
Spinal CX3CL1/CX3CR1 may not directly participate in the development of morphine tolerance in rats
CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly
The Astrocyte-Targeted Therapy by Bushi for the Neuropathic Pain in Mice
BACKGROUND: There is accumulating evidence that the activation of spinal glial cells, especially microglia, is a key event in the pathogenesis of neuropathic pain. However, the inhibition of microglial activation is often ineffective, especially for long-lasting persistent neuropathic pain. So far, neuropathic pain remains largely intractable and a new therapeutic strategy for the pain is still required. METHODS/PRINCIPAL FINDINGS: Using Seltzer model mice, we investigated the temporal aspect of two types of neuropathic pain behaviors, i.e., thermal hyperalgesia and mechanical allodynia, as well as that of morphological changes in spinal microglia and astrocytes by immunohistochemical studies. Firstly, we analyzed the pattern of progression in the pain behaviors, and found that the pain consisted of an "early induction phase" and subsequent "late maintenance phase". We next analyzed the temporal changes in spinal glial cells, and found that the induction and the maintenance phase of pain were associated with the activation of microglia and astrocytes, respectively. When Bushi, a Japanese herbal medicine often used for several types of persistent pain, was administered chronically, it inhibited the maintenance phase of pain without affecting the induction phase, which was in accordance with the inhibition of astrocytic activation in the spinal cord. These analgesic effects and the inhibition of astrocytic activation by Bushi were mimicked by the intrathecal injection of fluorocitrate, an inhibitor of astrocytic activation. Finally, we tested the direct effect of Bushi on astrocytic activation, and found that Bushi suppressed the IL-1β- or IL-18-evoked ERK1/2-phosphorylation in cultured astrocytes but not the ATP-evoked p38- and ERK1/2-phosphorylation in microglia in vitro. CONCLUSIONS: Our results indicated that the activation of spinal astrocytes was responsible for the late maintenance phase of neuropathic pain in the Seltzer model mice and, therefore, the inhibition of astrocytic activation by Bushi could be a useful therapeutic strategy for treating neuropathic pain
Current gene therapy using viral vectors for chronic pain
The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao)
The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis
<p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p
Rapid and efficient <em>Agrobacterium </em> mediated transformation of early scutellum derived calli of <em>indica</em> rice
20-28Rice is a staple food for humans and its demand in 2035 has been put at 852 million tons. Knowledge on genes and genome architecture helps in better understanding of growth and development mechanisms for crop improvement. Transgenic crops may offer a solution by means of higher yield and resistance to biotic and abiotic stresses. In this context, modification of Agrobacterium mediated transformation protocol for indica rice cultivar is imperative to increase transformation efficiency and reduce duration of transgenic development. Here, we developed an efficient Agrobacterium mediated transformation protocol using early scutellum derived calli of the indica rice cultivar Pusa Sugandh 2. Competency of 3, 4, 5 and 6 day old primary calli was compared with 21- day old secondary calli for Agrobacterium mediated transformation using a modified pCAMBIA 1304 harbouring GFP-GUS fusion gene driven by maize ubiquitin 1 promoter. The highest competency with stable transformation efficiency of 51% was observed for 5-6 day old primary calli. Molecular analysis confirmed stable integration of the transgene. Transgenic lines of Pusa Sugandh 2 were developed within a short period of two months using 5-6 day old primary calli
- …