158 research outputs found

    Intrinsic Thermal Sensing Controls Proteolysis of Yersinia Virulence Regulator RovA

    Get PDF
    Pathogens, which alternate between environmental reservoirs and a mammalian host, frequently use thermal sensing devices to adjust virulence gene expression. Here, we identify the Yersinia virulence regulator RovA as a protein thermometer. Thermal shifts encountered upon host entry lead to a reversible conformational change of the autoactivator, which reduces its DNA-binding functions and renders it more susceptible for proteolysis. Cooperative binding of RovA to its target promoters is significantly reduced at 37Β°C, indicating that temperature control of rovA transcription is primarily based on the autoregulatory loop. Thermally induced reduction of DNA-binding is accompanied by an enhanced degradation of RovA, primarily by the Lon protease. This process is also subject to growth phase control. Studies with modified/chimeric RovA proteins indicate that amino acid residues in the vicinity of the central DNA-binding domain are important for proteolytic susceptibility. Our results establish RovA as an intrinsic temperature-sensing protein in which thermally induced conformational changes interfere with DNA-binding capacity, and secondarily render RovA susceptible to proteolytic degradation

    Multi-photon ionisation spectroscopy for rotational state preparation of N+2

    Get PDF
    In this paper we investigate the 2 + 1β€² resonance enhanced multi-photon ionisation (REMPI) of molecular nitrogen via the a1Ξ g(v = 6) intermediate state and analyse its feasibility to generate molecular nitrogen ions in a well defined ro-vibrational state. This is an important tool for high precision experiments based on trapped molecular ions, and is crucial for studying the time variation of the fundamental constant mp/me using N+2. The transition is not reported in the literature and detailed spectral analysis has been conducted to extract the molecular constants of the intermediate state. By carefully choosing the intermediate ro-vibrational state, the ionisation laser wavelength and controlling the excitation laser pulse energy, unwanted formation of rotationally excited molecular ions can be suppressed and ro-vibrational ground state ions can be generated with high purity

    Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiopulmonary exercise testing (CPET) has become increasingly important as a routine procedure in daily clinical work. So far, it is generally accepted that an individualized exercise protocol with exercise duration of 6 to 12 minutes is preferable to assess maximal exercise performance. The aim of this study was to compare an individualized NYHA adapted exercise protocol with a fixed standard protocol in patients with severe pulmonary arterial hypertension.</p> <p>Methods</p> <p>Twenty-two patients (17 female, 5 male; mean age 49 Β± 14 yrs) underwent symptom limited CPET on a bicycle. On two consecutive days each subject performed a stepwise CPET according to a modified Jones protocol (16 Watt per minute stages) as well as an individualized NYHA adapted protocol with 5 or 10 Watt/min stages in a randomized order. Oxygen uptake at peak exercise (peakVO<sub>2</sub>) and anaerobic threshold (VO<sub>2</sub>AT), maximal ventilation (VE), breathing reserve (VE/MVV), ventilatory efficiency (VE vs. VCO<sub>2 </sub>slope), exercise time, maximal power and work rate were assessed and compared between both protocols.</p> <p>Results</p> <p>Comparing both, adapted NYHA protocol and standardized Jones protocol, we found significant differences in maximal power (56.7 Β± 19 W vs. 74 Β± 18 W; p < 0.001) and exercise time (332 Β± 107 sec. vs. 248 Β± 72 sec.; p < 0.001). In contrast, no significant differences were obvious comparing both protocols concerning work rate, VE, VE/MVV, peakVO<sub>2</sub>, VO<sub>2</sub>AT and VE vs. VCO<sub>2 </sub>slope.</p> <p>Conclusion</p> <p>Variations of incremental step size during CPET significantly affect exercise time and maximal power, whereas relevant parameters for clinical judgement and prognosis such as oxygen uptake, ventilation and ventilatory efficiency remain unchanged. These findings have practical implications for the exercise evaluation of patients with pulmonary hypertension. To reach maximal results for ventilation, oxygen uptake and gas exchange an individualization of incremental step size appears not to be mandatory.</p

    Nod2 Suppresses Borrelia burgdorferi Mediated Murine Lyme Arthritis and Carditis through the Induction of Tolerance

    Get PDF
    The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance

    The Chemical Evolution of the La0.6Sr0.4CoO3βˆ’Ξ΄ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity

    Get PDF
    Β© The Author(s) 2018Owing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO3 (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects. The present study sheds further light onto LSC surface changes also occurring under SOFC operating conditions. In-situ near ambient pressure X-ray photoelectron spectroscopy measurements were conducted at temperatures between 400 and 790 Β°C. Simultaneously, electrochemical impedance measurements were performed to characterise the catalytic activity of the LSC electrode surface for O2 reduction. This combination allowed a correlation of the loss in electro-catalytic activity with the appearance of an additional La-containing Sr-oxide species at the LSC surface. This additional Sr-oxide species preferentially covers electrochemically active Co sites at the surface, and thus very effectively decreases the oxygen exchange performance of LSC. Formation of precipitates, in contrast, was found to play a less important role for the electrochemical degradation of LSC.Fonds zur FΓΆrderung der wissenschaftlichen Forschung (FWF)212921411

    Impairment of Immunoproteasome Function by Ξ²5i/LMP7 Subunit Deficiency Results in Severe Enterovirus Myocarditis

    Get PDF
    Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits Ξ²1i/LMP2, Ξ²2i/MECL-1 and Ξ²5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFΞΊB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu

    Type I Interferon Induction Is Detrimental during Infection with the Whipple's Disease Bacterium, Tropheryma whipplei

    Get PDF
    Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN) response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection

    Plasmodium Protease ROM1 Is Important for Proper Formation of the Parasitophorous Vacuole

    Get PDF
    Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1–6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host

    A Nuclear Localization of the Infectious Haematopoietic Necrosis Virus NV Protein Is Necessary for Optimal Viral Growth

    Get PDF
    The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-Ξ”EGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-Ξ”NV-GFP) were used as controls. RTG-2 cells infected with rIHNV-Ξ”NV-GFP and rIHNV-NV-Ξ”EGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∢C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-Ξ”NV-GFP and rIHNV-NV-Ξ”EGDL were inhibited by poly I∢C. In addition, both rIHNV-Ξ”NV and rIHNV-NV-Ξ”EGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV
    • …
    corecore