7 research outputs found

    Significant receptor affinities of metabolites and a degradation product of mometasone furoate

    Get PDF
    Mometasone furoate (MF) is a highly potent glucocorticoid used topically to treat inflammation in the lung, nose and on the skin. However, so far no information has been published on the human glucocorticoid receptor activity of the metabolites or degradation products of MF. We have now determined the relative receptor binding affinities of the known metabolite 6β-OH MF and the degradation product 9,11-epoxy MF to understand their possible contribution to undesirable systemic side effects. In competition experiments with human lung glucocorticoid receptors we have determined the relative receptor affinities (RRA) of these substances with reference to dexamethasone (RRA = 100). We have discovered that 6β-OH MF and 9,11-epoxy MF display RRAs of 206 ± 15 and 220 ± 22, respectively. This level of activity is similar to that of the clinically used inhaled corticosteroid flunisolide (RRA 180 ± 11). Furthermore we observed that 9,11-epoxy MF is a chemically reactive metabolite. In recovery experiments with human plasma and lung tissue we found a time dependent decrease in extractability of the compound. Hence, we provide data that might contribute to the understanding of the pharmacokinetics as well as the clinical effects of MF

    A New Limit on CMB Circular Polarization from SPIDER

    Get PDF
    We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33<â„“<30733\lt {\ell }\lt 307. No other limits exist over this full range of angular scales, and Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on â„“(â„“+1)Câ„“VV/(2Ď€){\ell }({\ell }+1){C}_{{\ell }}^{{VV}}/(2\pi ) ranging from 141 to 255 ÎĽK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization

    SPIDER: CMB polarimetry from the edge of space

    Get PDF
    Spider is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. Spider targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. Spider ’s first long-duration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled transition-edge sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the Spider instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. Spider ’s second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps

    The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps

    Get PDF
    We present the XFaster analysis package, a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. It uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-C â„“ -based methods, the algorithm described here requires a minimal number of simulations and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data and also used as part of the Planck analysis. Here we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the Spider instrument. The package includes extensions for self-consistently estimating null spectra and estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations and its application to the Spider data set. © 2021. The American Astronomical Society. All rights reserved..Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope

    Get PDF
    International audienceWe present the first linear polarization measurements from the 2015 long-duration balloon flight of Spider, which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance. Galactic synchrotron emission is found to be negligible in the Spider bands. We employ two independent foreground-removal techniques to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planckdata to subtract the Galactic dust signal. A second approach, which constitutes a joint analysis of Spider and Planckdata in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and r parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman–Cousins and Bayesian constructions, finding r < 0.11 and r < 0.19, respectively. Roughly half the uncertainty in r derives from noise associated with the template subtraction. New data at 280 GHz from Spider’s second flight will complement the Planckpolarization maps, providing powerful measurements of the polarized Galactic dust emission
    corecore