4,225 research outputs found

    Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV

    Get PDF
    A plasma channel created by the combination of a capillary discharge and inverse Bremsstrahlung laser heating enabled the generation of electron bunches with energy up to 7.8 GeV in a laser-driven plasma accelerator. The capillary discharge created an initial plasma channel and was used to tune the plasma temperature, which optimized laser heating. Although optimized colder initial plasma temperatures reduced the ionization degree, subsequent ionization from the heater pulse created a fully ionized plasma on-axis. The heater pulse duration was chosen to be longer than the hydrodynamic timescale of ≈ 1 ns, such that later temporal slices were more efficiently guided by the channel created by the front of the pulse. Simulations are presented which show that this thermal self-guiding of the heater pulse enabled channel formation over 20 cm. The post-heated channel had lower on-axis density and increased focusing strength compared to relying on the discharge alone, which allowed for guiding of relativistically intense laser pulses with a peak power of 0.85 PW and wakefield acceleration over 15 diffraction lengths. Electrons were injected into the wake in multiple buckets and times, leading to several electron bunches with different peak energies. To create single electron bunches with low energy spread, experiments using localized ionization injection inside a capillary discharge waveguide were performed. A single injected bunch with energy 1.6 GeV, charge 38 pC, divergence 1 mrad, and relative energy spread below 2% full-width half-maximum was produced in a 3.3 cm-long capillary discharge waveguide. This development shows promise for mitigation of energy spread and future high efficiency staged acceleration experiments

    Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy.

    Get PDF
    Personalized medicine requires that treatments adapt to not only the patient but also changing factors within each individual. Although epilepsy is a dynamic disorder characterized by pathological fluctuations in brain state, surprisingly little is known about whether and how seizures vary in the same patient. We quantitatively compared within-patient seizure network evolutions using intracranial electroencephalographic (iEEG) recordings of over 500 seizures from 31 patients with focal epilepsy (mean 16.5 seizures per patient). In all patients, we found variability in seizure paths through the space of possible network dynamics. Seizures with similar pathways tended to occur closer together in time, and a simple model suggested that seizure pathways change on circadian and/or slower timescales in the majority of patients. These temporal relationships occurred independent of whether the patient underwent antiepileptic medication reduction. Our results suggest that various modulatory processes, operating at different timescales, shape within-patient seizure evolutions, leading to variable seizure pathways that may require tailored treatment approaches

    California Current seascape influences juvenile salmon foraging ecology at multiple scales

    Get PDF
    Juvenile salmon Oncorhynchus spp. experience variable mortality rates during their first few months in the ocean, and high growth during this period is critical to minimize size selective predation. Examining links between the physical environment and foraging ecology is important to understand mechanisms that drive growth. These mechanisms are complex and include interactions among the physical environment, forage availability, bioenergetics, and salmon foraging behavior. Our objectives were to explore how seascape features (biological and physical) influence juvenile Chinook salmon O. tshawytscha foraging at annual and feedingevent scales in the California Current Ecosystem. We demonstrate that forage abundance was the most influential determinant of mean salmon stomach fullness at the annual scale, while at the feeding-event scale, fullness increased with greater cumulative upwelling during the 10 d prior and at closer distances to thermal fronts. Upwelling promotes nutrient enrichment and productivity, while fronts concentrate organisms, likely resulting in available prey to salmon and increased stomach fullness. Salmon were also more likely to consume krill when there was high prior upwelling,andswitchedtonon-krillinvertebrates(i.e.amphipods,decapods,copepods)inweaker upwelling conditions. As salmon size increased from 72−250 mm, salmon were more likely to consume fish, equal amounts of krill, and fewer non-krill invertebrates. Broad seascape processes determined overall prey availability and fullness in a given year, while fine- and meso-scale processes influenced local accessibility of prey to individual salmon. Therefore, processes occurring at multiple scales will influence how marine organisms respond to changing environment

    Operando and High-throughput multicscale-tomography

    Get PDF
    We report about multiscale tomography with high throughput at the Diamond beamline I13L. The beamline has the purpose of multi-scale and operando imaging and consists of two independent branchlines operating in real and reciprocal space. The imaging branch -called Diamond-Manchester branchline- hosts micro-tomography, grating interferometry and a full-field microscope. For rapid recording a broad spectrum of the undulator radiation is used either with band-passing the light with a combination of a filter and a deflecting mirror or using a multilayer monochromator. For all the methods similar recording times can be achieved, with typical scanning times of some minutes and covering the resolution range from microns to the 100nm range. Most recently a robot arm has been installed to increase the throughput to 300 samples per day. The system is now implemented for user operation in remote operation mode for the micro-tomography setup and can be expanded to the two other experiments. The instrumental capabilities are applied on various topics such as the study of biodiversity of insects or the structural variations of electrode materials in batteries. Fast recording with dedicated sample environments (not using the sample changing robot) enables operando studies in many areas, the charging/discharging cycles on batteries, the degradation of teeth enamel under various conditions or loading brine sandstone mixtures with CO2, to name some examples. For imaging with highest spatial resolution we managed to improve significantly the recording speed of ptycho-tomography, which is now in the order of hours and will be reduced further. We demonstrated in the past 2-D recording with 10kHz and expand the instrumental capability with specific hardware dependent triggering and scanning schemes. We expand the research program for multi-scale imaging across both branchlines (imaging and coherence branchlines) with first studies such as batteries, brain research, concrete

    Incisive probing of intermolecular interactions in molecular crystals: core level spectroscopy combined with density functional theory

    Get PDF
    The α-form of crystalline para-aminobenzoic acid (PABA) has been examined as a model system for demonstrating how the core level spectroscopies X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) can be combined with CASTEP density functional theory (DFT) to provide reliable modeling of intermolecular bonding in organic molecular crystals. Through its dependence on unoccupied valence states NEXAFS is an extremely sensitive probe of variations in intermolecular bonding. Prediction of NEXAFS spectra by CASTEP, in combination with core level shifts predicted by WIEN2K, reproduced experimentally observed data very well when all significant intermolecular interactions were correctly taken into account. CASTEP-predicted NEXAFS spectra for the crystalline state were compared with those for an isolated PABA monomer to examine the impact of intermolecular interactions and local environment in the solid state. The effects of the loss of hydrogen-bonding in carboxylic acid dimers and intermolecular hydrogen bonding between amino and carboxylic acid moieties are evident, with energy shifts and intensity variations of NEXAFS features arising from the associated differences in electronic structure and bonding

    Probabilistic Models to Describe the Dynamics of Migrating Microbial Communities

    Get PDF
    In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported

    Serum methylarginines and spirometry-measured lung function in older adults

    Get PDF
    Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function
    corecore