907 research outputs found

    Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life

    Get PDF
    publisher: Elsevier articletitle: Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life journaltitle: Environmental Pollution articlelink: http://dx.doi.org/10.1016/j.envpol.2016.09.046 content_type: article copyright: © 2016 Published by Elsevier Ltd

    Body size but not warning signal luminance influences predation risk in recently metamorphosed poison frogs.

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.During early development, many aposematic species have bright and conspicuous warning appearance, but have yet to acquire chemical defenses, a phenotypic state which presumably makes them vulnerable to predation. Body size and signal luminance in particular are known to be sensitive to variation in early nutrition. However, the relative importance of these traits as determinants of predation risk in juveniles is not known. To address this question, we utilized computer-assisted design (CAD) and information on putative predator visual sensitivities to produce artificial models of postmetamorphic froglets that varied in terms of body size and signal luminance. We then deployed the artificial models in the field and measured rates of attack by birds and unknown predators. Our results indicate that body size was a significant predictor of artificial prey survival. Rates of attack by bird predators were significantly higher on smaller models. However, predation by birds did not differ between artificial models of varying signal luminance. This suggests that at the completion of metamorphosis, smaller froglets may be at a selective disadvantage, potentially because predators can discern they have relatively low levels of chemical defense compared to larger froglets. There is likely to be a premium on efficient foraging, giving rise to rapid growth and the acquisition of toxins from dietary sources in juvenile poison frogs.This study was supported by a PhD scholarship (IFARHU-SENACYT program) and a research grant No. APY-NI-010-006B/ SENACYT both awarded to EEF by the Government of Panama, and by a Royal Society University Research Fellowship to JDB. MS was supported by a Biotechnology and Biological Sciences Research Council David Phillips Research Fellowship (BB/G022887/1). HMR was supported by a Junior Research Fellowship from Churchill College, Cambridge. Special thanks to Rachel Page at STRI for supporting EEF with the grant application, Sistema Nacional de Investigacion de Panama (SNI), and the People of Santa Fe for their collaboration during the stud

    Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific

    Get PDF
    Acute HIV infection is associated with a vigorous immune response characterized by the proliferation of selected T cell receptor V beta (BV)-expressing CD8(+) T cells. These 'expansions', which are commonly detected in the peripheral blood, can persist during chronic HIV infection and may result in the dominance of particular clones. Such clonal populations are most consistent with antigen-driven expansions of CD8(+) T cells. However, due to the difficulties in studying antigen-specific T cells in vivo, it has been hard to prove that oligoclonal BV expansions are actually HIV specific. The use of tetrameric major histocompatibility complex-peptide complexes has recently enabled direct visualization of antigen-specific T cells ex vivo but has not provided information on their clonal composition. We have now made use of these tetrameric complexes in conjunction with anti-BV chain-specific monoclonal antibodies and analysis of cytotoxic T lymphocyte lines/clones to show that chronically clonally expanded CD8(+) T cells are HIV specific in vivo

    Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl River Delta of southern China: Impact of anthropogenic and biogenic sources

    Get PDF
    Reduced sulfur compounds (RSCs) such as carbonyl sulfide (OCS), dimethyl sulfide (DMS) and carbon disulfide (CS2) impact radiative forcing, ozone depletion, and acid rain. Although Asia is a large source of these compounds, until now a long-term study of their emission patterns has not been carried out. Here we analyze 16 months of RSC data measured at a polluted rural/coastal site in the greater Pearl River Delta (PRD) of southern China. A total of 188 canister air samples were collected from August 2001 to December 2002. The OCS and CS2 mixing ratios within these samples were higher in autumn/winter and lower in summer due to the influence of Asian monsoon circulations. Comparatively low DMS values observed in this coastal region suggest a relatively low biological productivity during summer months. The springtime OCS levels in the study region (574 ± 40 pptv) were 25% higher than those on other East Asia coasts such Japan, whereas the springtime CS2 and DMS mixing ratios in the PRD (47 ± 38 pptv and 22 ± 5 pptv, respectively) were 3-30 times lower than elevated values that have been measured elsewhere in East Asia (Japan and Korea) at this time of year. Poor correlations were found among the three RSCs in the whole group of 188 samples, suggesting their complex and variable sources in the region. By means of backward Lagrangian particle release simulations, air samples originating from the inner PRD, urban Hong Kong and South China Sea were identified. The mean mixing ratio of OCS in the inner PRD was significantly higher than that in Hong Kong urban air and South China Sea marine air (p < 0.001), whereas no statistical differences were found for DMS and CS2 among the three regions (p > 0.05). Using a linear regression method based on correlations with the urban tracer CO, the estimated OCS emission in inner PRD (49.6 ± 4.7 Gg yr-1) was much higher than that in Hong Kong (0.32 ± 0.05 Gg yr-1), whereas the estimated CS2 and DMS emissions in the study region accounted for a very few percentage of the total CS2 and DMS emission in China. These findings lay the foundation for better understanding sulfur chemistry in the greater PRD region of southern China. © 2010 Elsevier Ltd

    Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China

    Get PDF
    We analyze 16-month data of 13 major halocarbons measured at a southern China coastal site in the greater Pearl River Delta (PRD). A total of 188 canister air samples were collected from August 2001 to December 2002. Overall inspection indicated that CH2Cl2, C2Cl 4, and C2HCl3 had similar temporal variations while CFC-11, CFC-12, and CFC-113 showed the same emission patterns during the sampling period. Diurnal variations of halocarbons presented different patterns during ozone episode days, mainly related to emission strength, atmospheric dispersion, and photochemical lifetimes. For further statistics and source appointment, Lagrangian backward particle release simulations were conducted to help understand the potential source regions of all samples and classify them into different categories, including local Hong Kong, inner PRD, continental China, and marine air masses. With the exception of HCFC-142b, the mixing ratios of all halocarbons in marine air were significantly lower than those in urban and regional air (p < 0.01), whereas no significant difference was found between urban Hong Kong and inner PRD regional air, reflecting the dominant impact of the greater PRD regional air on the halocarbon levels. The halocarbon levels in this region were significantly influenced by anthropogenic sources, causing the halocarbon mixing ratios in South China Sea air to be higher than the corresponding background levels, as measured by global surface networks and by airborne missions such as Transport and Chemical Evolution Over the Pacific. Interspecies correlation analysis suggests that CHCl3 is mainly used as a solvent in Hong Kong but mostly as a feedstock for HCFC-22 in the inner PRD. Furthermore, CH3Cl is often used as a refrigerant and emitted from biomass/biofuel burning in the inner PRD. A positive matrix factorization receptor model was applied to the classified halocarbon samples in the greater PRD for source profiles and apportionments. Seven major sources were identified and quantified. Emissions from solvent use were the most significant source of halocarbons (71 ± 9%), while refrigeration was the second largest contributor (18 ± 2%). By further looking at samples from the inner PRD and from urban Hong Kong separately, we found that more solvent was used in the dry cleaning industry in Hong Kong, whereas the contribution of cleaning solvent in the electronic industry was higher in the inner PRD. Besides the two common sources of solvent use and refrigeration, the contributions of biomass/biofuel burning and feedstock in chemical manufacturing was remarkable in the inner PRD but negligible in Hong Kong. These findings are of help to effectively control and phase out the emissions of halocarbons in the greater PRD region of southern China Copyright 2009 by the American Geophysical Union

    The importance of particle dispersion in electrical treeing and breakdown in nano-filled epoxy resin

    Get PDF
    The addition of nano-fillers has been widely proposed as a method to enhance the dielectric properties of high voltage polymeric insulation, though there are mixed reports in the literature. Here the potential of silica nano-particles to extend the time to failure specifically through resistance to electrical tree growth in epoxy resin is determined. The benefit of silane treating the nano-particles before compounding is clearly established with regard to slowing tree growth and subsequent time to failure. The growth of trees in needle-plane samples is measured in the laboratory with loadings of 1, 3 and 5 wt% nano-filler. In all cases the average times to failure are extended, but silane treatment of the nano-particles prior to compounding yields much superior results. The emergence of a pronounced inception time before tree growth is also noted for the higher-filled, silane-treated cases. The average time to failure of silane-treated 5 wt% filled material was 28 times that of the unfilled resin. The improvement in performance between the nanocomposites with untreated and treated fillers is attributed to fewer agglomerations and improved dispersion of the filler in the treated cases. Measurements of Partial Discharge (PD) indicated significant differences in PD patterns during the growth of trees in the treated and untreated cases. This distinction may provide a quality control method for monitoring materials. In particular, long periods in which PDs were not measured were observed in the silane-treated cases. Visual imaging of tree growth in the unfilled material allowed the changing nature of the tree from fine to tree to dark tree to be observed as it grew. Corresponding PD measurements suggest the dark tree is gradually becoming conductive, and that growth of maximum PD measured is dependent on the relative rates of the growth of the tree and its carbonization. X-ray computer tomography identified significant differences in average tree channel diameters (a reduction from 2.8 µm to 2.0 µm for 1 wt% and 3 wt% cases). This implies that in addition to tree length changes, evaporated tree volumes also change and may explain the change in partial discharge characteristics observed
    corecore