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Abstract 

It has been hypothesised that, if ingested, plastic debris could act as vector for the transfer of 

chemical contaminants from seawater to organisms, yet modelling suggest that, in the natural 

environment, chemical transfer would be negligible compared to other routes of uptake. 

However, to date, the models have not incorporated consideration of the role of gut 

surfactants, or the influence of pH or temperature on desorption, whilst experimental work 

has shown that these factors can enhance desorption of sorbed contaminants several fold. 

Here, we modelled the transfer of sorbed organic contaminants  

dichlorodiphenyltrichloroethane (DDT), phenanthrene (Phe) and bis-2-ethylhexyl phthalate 

(DEHP) from microscopic particles of polyvinylchloride (PVC) and polyethylene (PE) to a 

benthic invertebrate, a fish and a seabird using a one-compartment model OMEGA (Optimal 

Modeling for EcotoxicoloGical Applications) with different conditions of pH, temperature 

and gut surfactants. Environmental concentrations of contaminants at the bottom and the top 

of published ranges were considered, in combination with ingestion of either 1 or 5% by 

weight of plastic. For all organisms, the combined intake from food and water was the main 

route of exposure for Phe, DEHP and DDT with a negligible input from plastic. For the 

benthic invertebrate, predictions including the presence of contaminated plastic resulted in 

very small increases in the internal concentrations of DDT and DEHP, while the net change 

in the transfer of Phe was negligible. While there may be scenarios in which the presence of 

plastic makes a more important contribution, our modelling study suggests that ingestion of 

microplastic does not provide a quantitatively important additional pathway for the transfer of 

adsorbed chemicals from seawater to biota via the gut.  
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Capsule abstract: Combined intake from food and water was the main route of exposure for 

DEHP, DDT and Phe to the organisms under investigation with a negligible input from 

plastic. 

 

 

Introduction 

 

Plastics are extraordinarily useful materials, due to their low cost, high malleability and 

durability. However, their longevity is resulting in substantial accumulation in some 

environments (Browne et al., 2010). Microplastic fragments are the most numerically 

abundant types of plastic debris in some locations (Goldstein et al., 2012) and modelling 

studies suggest the global ocean may be contaminated with 93 000 to 236 000 metric tons  

particle of microplastic (van Sebille et al., 2015). These small pieces of debris (<5mm) can 

form as a result of the fragmentation of larger items or as a result of direct release of small 

particles, such as microbeads from cosmetics, to the environment (Napper et al., 2015). 

Ingestion of microplastics, has been reported for a wide range of organisms including deposit 

and suspension feeders (Browne et al., 2008; Graham and Thompson, 2009; Ward and 

Shumway, 2004), crustaceans (Murray and Cowie, 2011), fish (Boerger et al., 2010), marine 

mammals (Denuncio et al., 2011) and seabirds (Avery-Gomm et al., 2012; van Franeker and 

Bell, 1988; van Franeker et al., 2011b). Deleterious physical effects on wildlife from 

ingestion of macroscopic pieces of plastics are well documented and recent work suggests 

that microscopic particles can also have harmful physical effects (Wright et al., 2013). 

However, the ecotoxicological consequences of ingesting microplastics are less clear. Two 
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routes of exposure have been suggested: i) exposure from the release of chemical additives 

that were incorporated into plastics during manufacture and/or ii) the transfer and 

accumulation of organic or inorganic contaminants from seawater to organisms as a 

consequence of ingestion. This paper examines the potential for plastics to act as a vector in 

the transport of hydrophobic organic chemicals (HOCs) from seawater to marine organisms.  

There are relatively few studies estimating the potential transfer of HOCs by microplastics 

(Gouin et al., 2011; Koelmans et al., 2016; Koelmans et al., 2014; Koelmans et al., 2013; 

Teuten et al., 2007). Using a bioavailability model, Teuten et al. (2007) showed that the 

addition of as little as 1 g of contaminated PE to a gram of sediment would give a 

significant increase in phenanthrene (Phe) accumulation by A. marina. (Teuten et al., 2007). 

This was supported by the work of Besseling et al. (2012) who, using laboratory studies, 

showed an increase in bioaccumulation of polychlorinated biphenyls (PCBs) into A. marina 

when contaminated polystyrene (PS) was present in sediments (0.074 % plastic d.w.) 

(Besseling et al., 2012). In the natural environment, a positive correlation has also been 

demonstrated between the amount of ingested plastic particles and the concentrations of 

PCBs in the tissues of birds (Great Shearwaters; Puffinus gravis) (Ryan et al., 1988). Work 

by Tanaka et al. (2013) also provided correlative evidence for the transfer of plastic-derived 

polybrominated diphenyl ethers (PBDEs) from ingested particles to the short-tailed 

shearwaters Puffinus tenuirostris (Tanaka et al., 2013). It is however difficult to conclude 

whether PCBs accumulation in their tissues resulted from pollutant transfer from plastics as 

opposed to other sources, such as contaminated food. Recent analyses of seabirds 

contaminated with plastics suggests  that exposure of the northern fulmar (Fulmarus glacialis) 

to polychlorobiphenyls (PCBs) due to ingestion of microplastic was probably negligible 

compared to the chemical fluxes entering the birds via their prey as internal HOC 

concentration was not linked to their stomach plastic concentrations (Herzke et al., 2015). In 
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contrast, recent laboratory work has shown that chemicals sorbed onto plastic in the marine 

environment can have negative effects on fish (Rochman et al., 2013). However, in this 

experiment, plastics were the only source of contaminants. In order to fully understand the 

potential for plastics to cause harm to marine life as a consequence of the transfer of 

contaminants from seawater to an organism it is essential to understand the relative 

importance of plastics compared to other pathways for chemical transfer, such as via 

respiration or diet.  

Recent models have concluded that the relative importance of plastic particles as vectors for 

HOCs to marine organisms is likely of limited importance when compared to other exposure 

pathways (Gouin et al., 2011; Koelmans et al., 2014; Koelmans et al., 2013). However, as 

outlined by Engler (2012), such models neglect several factors, namely: i) the role of gut 

retention time of ingested particles, ii) the role of physiological processes such as the 

presence of enzymes or gut surfactants and iii) differing physiological conditions of pH and 

temperature according to the type of organism with the case of a benthic invertebrate, a 

marine fish and a seabird. All these factors will likely influence the bioavailability of sorbed 

contaminants (Engler, 2012). For example, recent work has shown that Phe, DDT and bis-2-

ethylhexyl phthalate (DEHP) sorbed onto PVC and PE desorbed substantially faster in the 

presence of surfactants and at gut pH in cold blooded organisms and were further enhanced in 

warm blooded organism with a combined surfactant, pH and temperature enhancement rate 

of over 30 times compared to in seawater alone (Bakir et al., 2014). Enhanced desorption 

rates might be an important factor when assessing transfer of plastic co-contaminants to 

organisms upon ingestion, especially if gut transit time is short i.e. faster release in the gut. 

Enhancement of the leaching of plastic co-contaminants, such as polybrominated diphenyl 

ethers (PBDEs) was also reported in seabird’s stomach oil with subsequent accumulation in 

tissues (Tanaka et al., 2015). Over 20 times as much material was leached into stomach oil, 
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and over 50 times as much into fish oil (a major component of stomach oil), than in aqueous 

solution alone. 

Previous work also indicates that sorption capacity and desorption rates are highly pollutant 

and polymer specific. Hence robust predictions can only be made using a systematic 

approach considering different HOC and plastic combinations under physiologically relevant 

scenarios (Bakir et al., 2014).  

A range of environmentally relevant scenarios are investigated herein according to reported 

concentrations of HOCs in seawater and considering locations that had contrasting levels of 

contamination  using data from low and highly polluted sites, together with either low or high 

quantities of ingested plastics (1 and 5% ingested plastic particles). A comparison with 

respiratory and dietary uptake was then used to determine the relative importance of transport 

by contaminated microplastics compared to other pathways. A benthic invertebrate, a pelagic 

fish and a seabird were selected as candidate organisms for our models as they represent both 

cold and warm blooded organisms. Our invertebrate example was based on A. marina as 

some work has already been done on this species in relation to uptake of HOCs (Besseling et 

al., 2012; Browne et al., 2013). A. marina is widely distributed, OSPAR (Convention for the 

Protection of the Marine Environment of the North-East Atlantic) approved species and 

forms an important component of marine food webs. This species has already been shown to 

ingest microplastics (Thompson et al., 2004) with some indication of bioaccumulation of 

PCBs sorbed onto PS present in sediments (Besseling et al., 2012). Fish were selected 

because microplastics have been reported in the gut of several pelagic and demersal fish 

species (Boerger et al., 2010; Foekema et al., 2013; Lusher et al., 2013). It is therefore highly 

likely that fish ingesting plastic particles are in contact with sorbed chemicals which could 

desorb in the gut (Bakir et al., 2014; Endo et al., 2013). However, the associated 

consequences are not known. Seabirds are also known to ingest plastic debris with 

http://www.ospar.org/html_documents/ospar/html/OSPAR_Convention_e_updated_text_2007.pdf
http://www.ospar.org/html_documents/ospar/html/OSPAR_Convention_e_updated_text_2007.pdf
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detrimental physical effects and concern about the transfer of harmful chemicals (Ryan, 

1990). For birds, the uptake of organic compounds from seawater can only take place via 

ingestion of marine organisms such as fish (Walker et al., 2001). Ingestion of plastic debris 

by Northern fulmars has been documented in several studies at numerous locations over time 

(Avery-Gomm et al., 2012; Kühn and van Franeker, 2012; Mallory, 2008; Mallory et al., 

2006; van Franeker, 1985) allowing them to be used as biological indicators for spatial and 

temporal trends of plastic pollution (Avery-Gomm et al., 2012; van Franeker, 1985; van 

Franeker et al., 2011a). Evidence of transfer of pollutants from ingested plastic debris could 

therefore be integrated into this environmental monitoring to produce a tool for the 

environmental risk assessment of microplastics in the marine environment required to reach 

Good Environmental Status (GES) as part of the quality descriptor 10 of the Marine Strategy 

Framework Directive (MSFD 2008/56/EC). 

The main objectives of the present study were to , i) integrate previously quantified 

distribution coefficients and desorption rates for Phe, DDT and DEHP onto PVC and PE  into 

bioavailability models for various scenarios of contaminant concentrations and plastic 

abundance in order to predict transfer to a range of marine organisms occupying different 

ecological niches/feeding strategies and ii) determine the relative importance of plastics 

compared to other routes of exposure (food, respiration) for the transport of contaminants 

from seawater.  

 

Methods 

Model design, description and implementation 

Distribution coefficients (Kd) and desorption rates under varying gut conditions (different pH 

and temperatures scenarios) for the sorption/desorption of Phe, DDT and DEHP onto and 
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from PVC and PE (200-250 m) were determined previously (Bakir et al., 2014). Desorption 

rates ranged from 1 to 10 d
-1

 in accordance with Koelmanns et al. (2013) and were also in 

agreement with the derived desorption rate of nonylpehnol (NP) from PVC upon ingestion by 

Arenicola marina of 0.5 d
-1

 as shown experimentally by Browne et al. (2013) (Browne et al., 

2013).  

Koelmanns et al. (2013), suggested that desorption rate constants to gut fluids are between 1 

and 10 d
-1

. However, our experimentally measured desorption rates ranged from 0.23 ± 0.08 

to 12.10 ± 2.09 d
-1

 depending on the chemical-plastic combination as well as the simulated 

gut conditions (varying pH and temperature)(Bakir et al., 2014), indicating that some 

combinations of chemicals, plastic and gut conditions may lead to faster desorption of 

contaminants(Koelmans et al., 2014). Tanaka et al. (2015) also demonstrated considerably 

enhanced desorption of PBDEs from plastic under gut conditions. It is therefore important to 

consider such enhancement in desorption rates in a range of gut conditions (e.g. bile) for a 

range of plastic/co-contaminants.  

Uptake and elimination rates of contaminants were estimated for three routes of exposure 

including uptake and elimination from/to water, food and plastic. Each prediction was carried 

out for Phe, DDT and DEHP onto both PVC and PE. For all the contaminants, ‘low’ and 

‘highly’ polluted sites were examined according to reported aqueous concentrations for each 

contaminant (Table S1). In our scenarios, plastic ingestion relative to food was 1 and 5 % of 

diet (Carson et al., 2011). A one-compartment model was applied for an invertebrate benthic 

deposit feeder, a marine fish and a seabird (O'Connor et al., 2013a). Chemical concentrations 

in each species were calculated using three approaches (A-C): A) where concentrations of the 

pollutant in each species were calculated with the assumption that an individual ingested and 

egested sufficient plastic over its lifetime to reach equilibrium between lipid and plastics, B) 
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concentrations of the pollutant in individuals would achieve a lifelong plastic ingestion were 

calculated with the assumption that all pollutants sorbed onto plastics were transferred to the 

organisms and C) An OMEGA one-compartment model was used to calculate steady state 

internal concentrations of the chemicals. Approaches A and B represent worst-case scenarios 

and are shown in supplementary information while approach C, which represents the most 

likely environmental scenario, is presented here.  

 

Bioaccumulation model 

An OMEGA model (Optimal Modeling for EcotoxicoloGical Applications) was used to 

calculate the steady state internal concentrations of pollutants in individuals at different 

trophic levels (Hendriks et al., 2005; Hendriks et al., 2001b). For species i, the internal 

concentration (Ci) at steady state equals the ratio of the sum of uptake divided by the sum of 

elimination. In this study, we considered pollutant uptake from water (kw,X,in · Cw), from food 

(kf,X,in · Cfood) and from plastic (kp,X,in · Cp) as well as elimination with water (kw,X,out), faeces 

(kf,X,out), plastic (kp,X,out) and biomass dilution from growth or reproduction (kb,X,out). 

Biotransformation can reduce the bioaccumulation potential of organic chemicals. However, 

rates are difficult to estimate, and therefore are not included in Eq.1. Our scenarios therefore 

reflect a worst-case scenario. 

𝐶𝑖 =  
𝑘𝑤,𝑋,𝑖𝑛 ∙ 𝐶𝑤 + 𝑘𝑓,𝑋,𝑖𝑛 ∙ 𝐶𝑓𝑜𝑜𝑑 + 𝑘𝑝,𝑋,𝑖𝑛 ∙ 𝐶𝑝

𝛴𝑘𝑤,𝑋,𝑜𝑢𝑡 + 𝑘𝑓,𝑋,𝑜𝑢𝑡 + 𝑘𝑝,𝑋,𝑜𝑢𝑡 + 𝑘𝑏,𝑋,𝑜𝑢𝑡
     (Eq. 1) 

Calculation of all rates and concentrations are explained in more detail in the supporting 

information. We treated plastic like indigestible food (Eq. 2). The term (1-pp) denotes fraction 

of undigested plastic, and Kpw the plastic water partition coefficient. The denominator in the 

third term describes the diffusion resistances and the flow delays the pollutant experiences 
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during uptake: the diffusion resistance of the unstirred water layer (ρH20,f in d kg
-1

), through 

lipid layers (ρCH2,i in d kg
-1

) and the flow delay of the pollutant contained in the undigested 

food passing through the intestinal tract (1/ (Kpw · (1-pp) · γp · qT)). Finally, the uptake rate 

scales allometrically to the species weight w (in kg) with the rate coefficient κ (-): 

𝑘𝑝,𝑋,𝑖𝑛 =
1

1−𝑝𝑝
 ∙

1

𝐾𝑝𝑤
∙

𝑤−𝜅

𝜌𝐻2𝑂,𝑓+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤∙𝑞𝑇
+ 

1

𝐾𝑝𝑤∙(1−𝑝𝑝)∙𝛾𝑝∙𝑞𝑇

    (Eq. 2) 

With  w = Average weight of an individual of the particular species (kg) 

 κ = rate coefficient (-) 

pp = Fraction of plastic assimilated (kg kg
-1

) 

Plip,i = lipid fraction of animal (kg kg
-1

) 

Kpw = Plastic-water partition coefficient  

ρH20,f = Water layer resistance from/to food (d kg
-К

) 

ρCH2,i  = Lipid layer resistance (d kg
-К

) 

Kow  = Octanol-water partition coefficient 

qT  = Temperature correction factor (kg kg
-1

) 

γp  = Plastic ingestion coefficient (kg
k 

d
-1

) 

Analogously, the elimination rate via plastic egestion was calculated using Eq. 3: 

𝑘𝑝,𝑋,𝑜𝑢𝑡 =
1

 𝑝𝑙𝑖𝑝,𝑖∙ (𝐾𝑜𝑤−1)+1
∙

𝑤−𝜅

𝜌𝐻2𝑂,𝑓+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤∙𝑞𝑇
+ 

1

𝐾𝑝𝑤∙(1−𝑝𝑝) ∙ 𝛾𝑝∙ 𝑞𝑇

    (Eq. 3) 

where the term plip,i ∙ (Kow - 1) + 1 reflects the affinity of the chemical for the lipid and water 

compartments of the organism. The pollutant concentration in food was estimated using a 

standard food chain bioaccumulation model (O'Connor et al., 2013b).  

 

Parameterisation 
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Model parameters are listed in Table S6 and parameters specific to each species are shown in 

Table S7. For the plastic ingestion rate, the assumption that no fraction of the plastic was 

assimilated was formulated (pp = 0). The plastic ingestion coefficient (γp in kg
κ 

d
-1

) was 

calculated as a fraction of the food ingestion coefficient. As there was no available reported 

plastic ingestion coefficient, three approaches were examined; here the plastic ingestion 

coefficient equaled 1% and 5% of the food ingested. At the same time, the food intake was 

kept constant. This scenario might not be realistic as the food intake might decrease with an 

increasing intake in plastic.  

 

Evaluation of desorption: The OMEGA model is based on partition coefficients and thus 

assumed instantaneous equilibrium. However, our previous work has demonstrated that 

desorption rates were higher at higher temperature and lower pH (Bakir et al., 2014). 

Therefore, we evaluated the assumption of instantaneous equilibrium. Equations 4, 5 and 6 

are not part of approach C but an additional analysis in order to evaluate the assumption of 

instantaneous equilibrium and desorption in approach C. As a first step, we calculated the 

uptake efficiency E (in %) of each pollutant from plastic in order to determine the amount of 

contaminant absorbed. The uptake efficiency equals the ratio of the pollutant uptake rate and 

the plastic ingestion rate (Eq. 4): 

𝐸 =  
𝑘𝑝,𝑋,𝑖𝑛

𝑘𝑝,𝑖𝑛
          (Eq. 4) 

Plastic ingestion rate was proportional to the plastic ingestion rate coefficient and the 

temperature correction factor and scaled allometrically to the species mass w (in kg) with the 

coefficient κ (-) (Eq. 5): 

𝑘𝑝,𝑖𝑛 =  𝛾𝑝 ∙ 𝑞𝑡 ∙  𝑤−𝜅        (Eq. 5)  
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Subsequently, we calculated for a lugworm, a fish and a seabird whether the particle retention 

time (tr [d]) was long enough to allow complete desorption of the pollutant from the plastic. 

We assumed a gut retention time (GRT) for food particles for A. marina, fish and seabird of 

2h, 4-158 h and 11 h respectively (Table S2). Hence we assumed that plastic passed through 

the organisms at a similar rate to their typical food. We quantified the pollutant concentration 

onto plastic as in the high pollution scenario and calculated the fraction of the pollutant which 

remained sorbed to the plastic after the gut residence time of the particle (Eq. 6): 

𝐶𝑝(𝑡=𝑡𝑟)

𝐶𝑝(𝑡=0)
=  

𝐶𝑝(𝑡=𝑡𝑟) ∙ 𝑒−𝑘𝑑𝑒𝑠 ∙ 𝑡

𝐶𝑝
         (Eq. 6) 

where kdes denotes the measured desorption rate constant (d
-1

) as measured in Bakir et al. 

(2014).  

 

Results and discussion 

Model validation without plastic using reported environmental data 

Model validation was carried out by comparing modelled concentrations in the organisms 

calculated to arise in the absence of plastics, with representative data for reported HOCs 

concentrations for biota in the environment.  

The estimated DEHP concentration in the lugworm, excluding plastic (1055 g kg
-1 

ww for a 

low polluted site), was in the same order of magnitude  to reported concentrations in 

lugworms and was in accordance with DEHP levels reported for the sandworm Neanthes 

virens (490 g kg
-1 

ww) (Table S5 (Ray et al., 1983a). Higher concentrations were reported 

for invertebrates sampled at the vicinity of a DEHP processing plant, simulated by a highly 

polluted site in this study (439 mg kg
-1

 ww (493,000 g kg
-1

 ww), Table S5, with 

concentration of 5300 g kg
-1

 ww for Odonata sp. to up to 14400 g kg
-1

 for Asellus 
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aquaticus (Organization, 1992; Persson et al., 1978). Estimated concentrations from food 

excluding plastic were thus in agreement with reported HOCs concentrations for the lugworm 

for different locations, indicating the environmental relevance of our model (Tables S2-S4). 

Concentrations of DDT predicted in the tissues of the seabird from food (excluding plastic) 

were also in accordance with reported concentrations of DDT in low and highly polluted sites 

(178 g kg
-1

 ww and 20.5 mg kg
-1

 ww respectively, Table S2). However, concentrations of 

DDT are highly variable, according to species. For example, reported p,p’-DDT 

concentrations ranged from 58 g kg
-1

 ww for the black-browed albatross to 2.6 mg kg
-1

 ww 

for the black-footed albatross (Guruge et al., 2001). DEHP concentrations in fish are very 

variable depending on the habitat, feeding habits and biodegradation levels of phthalates 

(Chang et al., 2005; Yuan et al., 2002). High concentrations of DEHP have been widely 

reported in fish with concentrations up to 254 mg kg
-1

 dw (Huang et al., 2008). Data on 

DEHP concentrations in birds are limited. Relatively low concentrations have been reported 

for kittiwakes located in remote fjords of the Norwegian Arctic with concentrations up to 155 

g kg
-1

 ww (Institute, 2009). Much higher concentrations are expected to be reached in 

highly polluted areas (Persson et al., 1978).  

 

Relative contribution of microplastics for the transfer of sorbed HOCs to marine 

organisms as compared to the contribution from food and water.  

The OMEGA model permitted us to differentiate and estimate the relative contributions of 

microplastics from that of the combined intake from food and water to the total body burden 

of HOCs.  

Benthic invertebrate: Combined intake from food and water was the main route of exposure 

for DEHP, DDT and Phe to the benthic invertebrate with a negligible input from plastic 
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(Fig.1). Predicted net transfers of HOCs to the lugworm were in the order [DEHP] > [DDT] > 

[Phe] in the absence of plastics and in both low HOCs-polluted and highly-HOCs polluted 

scenarios, with either 1% or 5% plastics (Fig.1). Estimated concentrations of DEHP 

transferred from PVC and PE plastics to the tissues of A. marina were higher than for DDT 

and Phe as a consequence of the high concentrations of DEHP found in the marine 

environment (due to its use in the manufacture of some plastics, Table S1). For DEHP sorbed 

onto PVC the contribution under the same conditions was less than PE, with a 2% increased 

contribution to the total body burden predicted by the model (Fig.1).  

The contribution  of the plastics to changes in the Phe body burden were negligible < 0.1% 

increase with both PVC and PE, while the contribution increased somewhat for DDT (max. 

of 2% increase for the scenario with 5% ingested plastics) with a maximum of an 11% 

increase in DEHP  from PE in the worst case scenario (Fig.1).  

Marine fish: Combined intake from food and water was the main route of exposure for 

DEHP, DDT and Phe to the marine fish with a negligible input from plastic (Fig.2). Predicted 

net transfers of contaminants to a marine fish were again dependent on the chemical 

contaminant (HOC) (Fig.2) and also followed the order [DEHP] > [DDT] > [Phe] in the 

absence of plastics and in both low HOCs-polluted and highly-HOCs polluted scenarios, and 

with either 1% or 5% plastics. Whilst a decrease in bioaccumulation of each of the HOCs was 

predicted following plastics ingestion (Fig.2), for Phe and DEHP this was very small for both 

plastics, for DDT a decrease in body burden of 4% was predicted for PE and PVC for a worst 

case scenario (5 % ingested plastic) (Fig. S2b).  

Seabird: Combined intake from food and water was the main route of exposure for DEHP, 

DDT and Phe for the seabird with a negligible input from plastic (Fig.3). Predicted net 

transfers of contaminants to seabirds were also highly dependent on the chemical (Fig.3) and 
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once more followed the order [DEHP] > [DDT] > [Phe] in the absence of plastics and in both 

low HOCs-polluted and highly-HOCs polluted scenarios, and with either 1% or 5% plastics.  

Concentrations of p,p’-DEE (as the major DDT) reported in muscle and liver tissues in 75 

Northern Fulmars (Herzke et al., 2015) were in agreement with the internal DDT 

concentration predicted in the present study with concentrations of 178, 176 and 166 g kg
-1 

ww
 
for no plastic, 1 and 5% ingested PE respectively for a low polluted site (Figs. 3 and S10).  

Tanaka et al. (2015) also investigated the accumulation of PBDEs from ingested plastics in 

the tissues of 18 wild seabirds which contained on average 22.5 plastic particles in either their 

gizzard or in their proventriculus (average weight of plastic 0.31 g per bird). This was in the 

range of the amount of plastic reported in the gut of seabirds, including Northern fulmars 

(Table S2A) (Avery-Gomm et al., 2012; Blight and Burger, 1997; van Franeker et al., 2011a). 

PBDEs were detected in all birds in both the liver and abdominal adipose tissue suggesting 

strong correlation between HOCs in ingested plastics and internal concentration for seabirds. 

However a recent study suggested that HOC concentration was more representative of intake 

via prey than from transfer from plastic which is consistent with this study (Herzke et al., 

2015).  

Tanaka et al. (2015) also estimated the relative importance of the ingestion of plastic particles 

contaminated with PBDEs for transfer to bird tissues as compared from food alone. By using 

the measured desorption rate of PBDEs in stomach oil of 15% and the initial concentration of 

PBDE in plastic (5080 ng of BDE209) they estimated a leaching of 762 ng into the digestive 

fluid within the bird during 15 days, The relative contribution from the food source was 

estimated to be 11 ng of BDE209 and 164 ng of BDE47 through prey over 15 days. They 

concluded that for the congener BDE209, the relative contribution was more substantial from 

plastic ingestion (762 ng) than from the food source (11 ng). However the opposite trend was 
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estimated for the congener BDE47 (Tanaka et al., 2015). This was in agreement with our 

finding that relative contribution of plastic ingestion for the transfer of sorbed co- 

contaminants was plastic and pollutant specific.  

The model used in the present study predicted a decrease in bioaccumulation due to the 

presence of plastics, which was very small, except for with Phe, where a 5% to 45% decrease 

was predicted with ingestion of PVC and PE respectively (Fig. 3). This result is in 

accordance with  Koelmans et al. (2013) who also suggested that the decrease in 

bioaccumulation would be  more substantial for plastics which had a high affinity for HOCs, 

such as PE (Koelmans et al., 2013). Such effect was also suggested by Herzke et al. (2015) 

indicating that microplastics can act as “negligible depletion” passive samplers for HOCs 

originating from ingested food.  

 

Role of gut retention time for desorption of sorbed contaminants 

The impact of particle retention time in the gut of the different organisms on the 

concentrations of desorbed contaminants was estimated using Eq.6. The ratio between 

contaminant concentrations on the plastic at the end of the particle retention time and the 

initial concentrations, are listed in Table 1. It is clear from the data shown in Table 1 that tr 

was not long enough in all cases to allow complete desorption from plastics, even for a tr of 

158 hours for the fish. In other cases, a substantial amount could potentially desorb from the 

plastic particles. However, approach C, which is based on the instantaneous equilibrium 

assumption, indicated that other uptake and elimination routes were still more important in 

determining the body burdens of the organisms than the ingestion of plastic particles. 

Therefore, varying gut retention time appears to be of minor relevance in this context. 

However, microplastic particles have been shown to translocate from the gut and hence could 
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accumulate or persist in locations other than the gut. The potential toxicological effects of 

prolonged retention and associated desorption in other tissues, together with the potential for 

antagonistic effects caused by the physical presence of plastic particles may therefore warrant 

further investigation.  

 

Predicted influence of plastic ingestion on internal concentration of sorbed contaminants 

Predicted concentrations of contaminants transferred from plastics to marine organisms using 

the OMEGA model indicated a range from no impact through to increasing internal 

concentrations of contaminants in the lugworm, or a decrease for the fish and the seabird 

(Figs. 1-3, Tables S8-S10). These findings indicate that the body burden changes with plastic 

ingestion are partly dependent on the type of organism. The lack of effect may be more 

certain for higher trophic species, but due to the small impact of plastic observed in this study, 

it also depends on the model parameterization and the related uncertainties, and should 

therefore be interpreted with care. 

Generally, an increase of the internal concentration occurred if the contribution of the uptake 

via plastic ingestion relative to other uptake routes was larger than the contribution of 

elimination through plastic egestion relative to other elimination routes. In the opposite 

direction the same holds for the predicted decreases in internal concentrations. The major (but 

not the only) factor explaining the differences between the lugworm and the other species 

was the difference in feeding strategy and in modelled food assimilation efficiencies 

(Hendriks et al., 2001a). Both Koelmans et al. (2013) and Gouin et al. (2011) predicted a 

small impact of plastic ingestion on the overall body burden of chemical (Gouin et al., 2011; 

Koelmans et al., 2013). Both studies predicted a decrease in bioaccumulation due to the 

counteraction of the biomagnification mechanism by the attenuation of the gradient between 
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plastics and lipids. However, predictions from our study have shown that any increase of 

decrease in internal concentration was small and should not be regarded as important given 

the intrinsic uncertainties of such modelling approaches. Herzke et al. (2015) reported a 

strong correlation between the PCBs and DDTs in ingested plastics and concentrations found 

in muscle tissue, considered as reflecting a long-term HOC exposure via food uptake. 

However bioaccumulation of HOCs was not found to be proportional to the quantity of 

plastic ingested, thus not supporting the suggestion that the presence of plastics in the 

environment might increase the accumulation of contaminants in marine organisms 

postulated by some other studies e.g. (Browne et al., 2013; Rochman et al., 2013; Teuten et 

al., 2007). This conclusion was also consistent with the present study which suggested 

negligible uptake of plastic co-contaminants from ingestion of plastic alone. 

 

Environmental significance 

Recent experimental data from laboratory studies has indicated that some sorbed chemicals 

can be transferred from microplastics to organisms at high concentrations and some 

biological effects have also been demonstrated (Browne et al., 2013; Rochman et al., 2013; 

Wright et al., 2013). However, the concentrations of plastics used in these experiments were 

typically high compared to those typically reported in the natural environment and hence 

there is uncertainty as to whether transfer of sorbed chemicals by microplastics is a 

quantitatively important route when compared to other pathways, such as respiratory or 

uptake from food. Calculations using mathematical models suggest that transfer of some 

sorbed hydrophobic organic pollutants (HOCs) from plastics is of limited importance 

compared to other routes of exposure Gouin et al. (2011; Koelmans et al. (2013). The present 

study also indicates that the predicted contribution of desorption from plastics to the overall 
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body burdens of sorbed HOCs in three marine organisms is probably small and that 

accumulation is dominated by uptake and elimination processes other than the presence of 

plastic. It has been estimated elsewhere that the flux of HOCs by ingestion of natural prey 

would be at least 21000 times higher than the flux of HOCs following plastic ingestion 

(Herzke et al., 2015); and that ingested plastic particles act as “passive samplers” due to their 

lipophilic behaviour explaining the correlation between concentrations of HOCs found in 

plastic and tissues of organisms (Herzke et al., 2015).  

From the perspective of risk assessment for plastic debris, for example in the context of 

assessing harm associated with plastic debris for policy such as the MSFD, it may therefore 

be beneficial to focus on scenarios other than transport of HOCs. By contrast, the potential 

desorption from microplastics and subsequent bioavailability of chemicals which have been 

incorporated as additives during plastics manufacture, sometimes at high percentage 

concentrations (~ 80 % by weight in some polymers (Di Gangi, 1999; Kavlock et al., 2002)), 

has received much less attention in environmentally-relevant scenarios. Commonly used 

additives, such phthalate esters are found in many plastic products. These items are 

frequently reported in marine litter; however, it is unclear whether any substantive release of 

such additives from ingested plastic could occur into marine organisms. Therefore, 

bioaccumulation models such as that used herein, should also be applied to relate release 

rates of plastic additives to the tissues of organisms. This might permit predictions of additive 

concentrations in the tissues of organisms following ingestion of microplastics and allow 

investigation of any related toxicological effects in a similar manner to that conducted here 

for sorbed organic pollutants.  

In addition to the potential for release of additive chemicals there is already some evidence 

that ingestion of relatively small quantities of microplastics (1% by weight in sediment) can 

cause physical harm by compromising the ability of deposit feeding worms to store energy. 



21 
 

There is also evidence that small particles (> 9.6 m) may be able to pass from the digestive 

tract into the circulatory system, although it is not clear what the subsequent fate of these 

particles might be (Browne et al., 2008). If they accumulate in tissues or organs they may 

present as yet undescribed types of hazard. Moreover, there may be cumulative effects if 

plastic particles accumulate in tissues and subsequently release chemicals over longer 

timescales than would occur during gut transit. Further experimental work on very small 

particles including those into the nano-size range are therefore needed (GESAMP, 2015). 

Due to their smaller size and larger surface areas, desorption rates are expected to be much 

faster than for mm size particles (Koelmans et al., 2013).  

 

Acknowledgements 

A. Bakir was supported by the Department for Environment, Food and Rural Affairs 

(DEFRA) in the United Kingdom as part of a larger project investigating microplastics in the 

marine environment (Grant number ME 5416). We also gratefully acknowledge the financial 

support of the European Union to I. O’Connor through the Environmental ChemOinformatics 

(ECO) project (FP7-PEOPLE-ITN-2008, no.238701).  

 

References 

 

Avery-Gomm, S., O’Hara, P.D., Kleine, L., Bowes, V., Wilson, L.K., Barry, K.L., 2012. 
Northern fulmars as biological monitors of trends of plastic pollution in the eastern 
North Pacific. Marine Pollution Bulletin 64, 1776-1781. 
Bakir, A., Rowland, S.J., Thompson, R.C., 2014. Enhanced desorption of persistent 
organic pollutants from microplastics under simulated physiological conditions. 
Environmental Pollution 185, 16-23. 



22 
 

Besseling, E., Wegner, A., Foekema, E.M., van den Heuvel-Greve, M.J., Koelmans, A.A., 
2012. Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm 
Arenicola marina (L.). Environmental Science & Technology 47, 593-600. 
Blight, L.K., Burger, A.E., 1997. Occurrence of plastic particles in seabirds from the 
eastern North Pacific. Marine Pollution Bulletin 34, 323-325. 
Boerger, C.M., Lattin, G.L., Moore, S.L., Moore, C.J., 2010. Plastic ingestion by 
planktivorous fishes in the North Pacific Central Gyre. Marine Pollution Bulletin 60, 
2275-2278. 
Browne, M.A., Dissanyake, A., Galloway, T.S., Lowe, D., Thompson, R.C., 2008. 
Ingested microplastic translocates to the circulatory system of the mussel,  Mytilus 
edulis  (L.). Environ.Sci.Technol. 42, 5026-5031. 
Browne, M.A., Galloway, T.S., Thompson, R.C., 2010. Spatial patterns of plastic debris 
along estuarine shorelines. Environmental Science & Technology 44, 3404-3409. 
Browne, Mark A., Niven, Stewart J., Galloway, Tamara S., Rowland, Steve J., 
Thompson, Richard C., 2013. Microplastic Moves Pollutants and Additives to Worms, 
Reducing Functions Linked to Health and Biodiversity. Current Biology 23, 2388-2392. 
Carson, H.S., Colbert, S.L., Kaylor, M.J., McDermid, K.J., 2011. Small plastic debris 
changes water movement and heat transfer through beach sediments. Marine 
Pollution Bulletin 62, 1708-1713. 
Chang, B.V., Liao, C.S., Yuan, S.Y., 2005. Anaerobic degradation of diethyl phthalate, 
di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan. 
Chemosphere 58, 1601-1607. 
Denuncio, P., Bastida, R., Dassis, M., Giardino, G., Gerpe, M., Rodríguez, D., 2011. 
Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and 
d’Orbigny, 1844), from Argentina. Marine Pollution Bulletin 62, 1836-1841. 
Di Gangi, J., 1999. Phthalates in PVC medical products from 12 countries. Washington, 
DC: Greenpeace. 
Endo, S., Yuyama, M., Takada, H., 2013. Desorption kinetics of hydrophobic organic 
contaminants from marine plastic pellets. Marine Pollution Bulletin 74, 125-131. 
Engler, R.E., 2012. The Complex Interaction between Marine Debris and Toxic 
Chemicals in the Ocean. Environmental Science & Technology 46, 12302-12315. 
Foekema, E.M., De Gruijter, C., Mergia, M.T., van Franeker, J.A., Murk, A.J., Koelmans, 
A.A., 2013. Plastic in North Sea Fish. Environmental Science & Technology 47, 8818-
8824. 
GESAMP, 2015. Sources, fate and effects of microplastics in the marine environment: 
a global assessment, in: Kershaw, P.J. (Ed.), p. 96 p. 
Goldstein, M.C., Rosenberg, M., Cheng, L., 2012. Increased oceanic microplastic 
debris enhances oviposition in an endemic pelagic insect. Biology Letters. 
Gouin, T., Roche, N., Lohmann, R., Hodges, G., 2011. A thermodynamic approach for 
assessing the environmental exposure of chemicals absorbed to microplastic. 
Environmental Science & Technology 45, 1466-1472. 
Graham, E.R., Thompson, J.T., 2009. Deposit- and suspension-feeding sea cucumbers 
(Echinodermata) ingest plastic fragments. Journal of Experimental Marine Biology 
and Ecology 368, 22-29. 
Guruge, K.S., Watanabe, M., Tanaka, H., Tanabe, S., 2001. Accumulation status of 
persistent organochlorines in albatrosses from the North Pacific and the Southern 
Ocean. Environmental Pollution 114, 389-398. 
Hendriks, A.J., Traas, T.P., Huijbregts, M.A.J., 2005. Critical body residues linked to 
octanol - Water partitioning, organism composition, and LC50 QSARs: Meta-analysis 
and model. Environmental Science and Technology 39, 3226-3236. 
Hendriks, A.J., van der Linde, A., Cornelissen, G., Sijm, D.T., 2001a. The power of size. 
1. Rate constants and equilibrium ratios for accumulation of organic substances 
related to octanol‐water partition ratio and species weight. Environmental Toxicology 
and Chemistry 20, 1399-1420. 



23 
 

Hendriks, A.J., Van der Linde, A., Cornelissen, G., Sijm, D.T.H.M., 2001b. The power of 
size. 1. Rate constants and equilibrium ratios for accumulation of organic substances 
related to octanol-water partition ratio and species weight. Environmental Toxicology 
and Chemistry 20, 1399-1420. 
Herzke, D., Anker-Nilssen, T., Nøst, T.H., Götsch, A., Christensen-Dalsgaard, S., 
Langset, M., Fangel, K., Koelmans, A.A., 2015. Negligible Impact of Ingested 
Microplastics on Tissue Concentrations of Persistent Organic Pollutants in Northern 
Fulmars off Coastal Norway. Environmental Science & Technology. 
Huang, P.-C., Tien, C.-J., Sun, Y.-M., Hsieh, C.-Y., Lee, C.-C., 2008. Occurrence of 
phthalates in sediment and biota: Relationship to aquatic factors and the biota-
sediment accumulation factor. Chemosphere 73, 539-544. 
Institute, S.E.R., 2009. Screening of new contaminants in samples from the Norwegian 
Arctic. Silver, Platinum, Sucralose, Bisphenol A, Tetrabrombisphenol A, Siloxanes, 
Phtalates (DEHP) and Phosphororganic flame retardants. 
Kavlock, R., Boekelheide, K., Chapin, R., Cunningham, M., Faustman, E., Foster, P., 
Golub, M., Henderson, R., Hinberg, I., Little, R., 2002. NTP center for the evaluation of 
risks to human reproduction: phthalates expert panel report on the reproductive and 
developmental toxicity of di (2-ethylhexyl) phthalate. Reproductive toxicology 16, 529-
653. 
Koelmans, A.A., Bakir, A., Burton, G.A., Janssen, C.R., 2016. Microplastic as a vector 
for chemicals in the aquatic environment: critical review and model-supported 
reinterpretation of empirical studies. Environmental Science & Technology 50, 3315-
3326. 
Koelmans, A.A., Besseling, E., Foekema, E.M., 2014. Leaching of plastic additives to 
marine organisms. Environmental Pollution 187, 49-54. 
Koelmans, A.A., Besseling, E., Wegner, A., Foekema, E.M., 2013. Plastic as a carrier of 
POPs to aquatic organisms: a model analysis. Environmental Science & Technology 
47, 7812-7820. 
Kühn, S., van Franeker, J.A., 2012. Plastic ingestion by the northern fulmar (< i> 
Fulmarus glacialis</i>) in Iceland. Marine Pollution Bulletin 64, 1252-1254. 
Lusher, A.L., McHugh, M., Thompson, R.C., 2013. Occurrence of microplastics in the 
gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine 
Pollution Bulletin 67, 94-99. 
Mallory, M.L., 2008. Marine plastic debris in northern fulmars from the Canadian high 
Arctic. Marine Pollution Bulletin 56, 1501-1504. 
Mallory, M.L., Roberston, G.J., Moenting, A., 2006. Marine plastic debris in northern 
fulmars from Davis Strait, Nunavut, Canada. Marine Pollution Bulletin 52, 813-815. 
Murray, F., Cowie, P.R., 2011. Plastic contamination in the decapod crustacean 
Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin 62, 1207-1217. 
Napper, I.E., Bakir, A., Rowland, S.J., Thompson, R.C., 2015. Characterisation, 
quantity and sorptive properties of microplastics extracted from cosmetics. Marine 
Pollution Bulletin 99, 178-185. 
O'Connor, I.A., Huijbregts, M.A., Ragas, A.M., Hendriks, A.J., 2013a. Predicting the oral 
uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic 
range. Toxicology and applied pharmacology 266, 150-156. 
O'Connor, I.A., Huijbregts, M.A.J., Ragas, A.M.J., Hendriks, A.J., 2013b. Predicting the 
oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and 
lipophilic range. Toxicology and Applied Pharmacology 266, 150-156. 
Organization, W.H., 1992. International programme on chemical safety "diethylhexyl 
phthalate", Environmental Health Criteria 131, Geneva. 
Persson, P.-E., Penttinen, H., Nuorteva, P., 1978. DEHP in the vicinity of an industrial 
area in Finland. Environmental Pollution (1970) 16, 163-166. 
Ray, L.E., Murray, H., Giam, C., 1983. Organic pollutants in marine samples from 
Portland, Maine. Chemosphere 12, 1031-1038. 



24 
 

Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J., 2013. Ingested plastic transfers 
hazardous chemicals to fish and induces hepatic stress. Scientific reports 3. 
Ryan, P.G., 1990. The effects of ingested plastic and other marine debris on seabirds. 
NOAA Technical Memorandum. 
Ryan, P.G., Connell, A.D., Gardner, B.D., 1988. Plastic ingestion and PCBs in seabirds: 
Is there a relationship? Marine Pollution Bulletin 19, 174-176. 
Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M.-a., Watanuki, Y., 
2013. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting 
marine plastics. Marine Pollution Bulletin. 
Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M.-a., Watanuki, Y., 
2015. Facilitated Leaching of Additive-Derived PBDEs from Plastic by Seabirds’ 
Stomach Oil and Accumulation in Tissues. Environmental Science & Technology 49, 
11799-11807. 
Teuten, E.L., Rowland, S.J., Galloway, T.S., Thompson, R.C., 2007. Potential for 
Plastics to Transport Hydrophobic Contaminants. Environmental Science & 
Technology 41, 7759-7764. 
Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., 
McGonigle, D., Russell, A.E., 2004. Lost at sea: where is all the plastic? Science 304, 
838-838. 
van Franeker, J.A., 1985. Plastic ingestion in the North Atlantic fulmar. Marine 
Pollution Bulletin 16, 367-369. 
van Franeker, J.A., Bell, P.J., 1988. Plastic ingestion by petrels breeding in Antarctica. 
Marine Pollution Bulletin 19, 672-674. 
van Franeker, J.A., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., 
Hansen, P.-L., Heubeck, M., Jensen, J.-K., Le Guillou, G., 2011a. Monitoring plastic 
ingestion by the northern fulmar< i> Fulmarus glacialis</i> in the North Sea. 
Environmental Pollution 159, 2609-2615. 
van Franeker, J.A., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., 
Hansen, P.-L., Heubeck, M., Jensen, J.-K., Le Guillou, G., Olsen, B., Olsen, K.-O., 
Pedersen, J., Stienen, E.W.M., Turner, D.M., 2011b. Monitoring plastic ingestion by the 
northern fulmar Fulmarus glacialis in the North Sea. Environmental Pollution 159, 
2609-2615. 
van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., van Franeker, 
J., Eriksen, M., Siegel, D., Galgani, F., Lavender, L.K., 2015. A global inventory of small 
floating plastic debris. Environmental Research Letters 10, 124006. 
Walker, C., Hopkin, S., Sibly, R., Peakall, D., 2001. Toxicity testing. Principles of 
ecotoxicology. 2nd edition. Taylor & Francis, 93-118. 
Ward, E.J., Shumway, S.E., 2004. Separating the grain from the chaff: particle 
selection in suspension- and deposit-feeding bivalves. Journal of Experimental 
Marine Biology and Ecology 300, 83-130. 
Wright, S.L., Rowe, D., Thompson, R.C., Galloway, T.S., 2013. Microplastic ingestion 
decreases energy reserves in marine worms. Current Biology 23, R1031-R1033. 
Yuan, S.Y., Liu, C., Liao, C.S., Chang, B.V., 2002. Occurrence and microbial 
degradation of phthalate esters in Taiwan river sediments. Chemosphere 49, 1295-
1299. 

 

 

 

 



25 
 

Table 1. Evaluation of particle retention time (tr) on desorption of sorbed contaminants 

estimated using Eq.6 

 

 

 

 

 

 

 

PE PVC

Lugworm -  tr 2 hours DDT 0.9 1.0

Phe 0.8 0.9

DEHP 1.0 0.9

Fish - tr 4 hours DDT 0.8 0.9

Phe 0.6 0.8

DEHP 1.0 0.8

Fish tr 158 hours DDT 1.6E-05 0.13

Phe 2.6E-09 1.7E-05

DEHP 1.7E-01 1.2E-04

Seabird - tr 11 hours DDT 0.04 0.8

Phe 0.004 0.1

DEHP 0.2 0.1

Cx (ng/g), plastic (t=tr)/Cx (ng/g), plastic (t=0)
organism POP
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Fig. 1 Predicted internal concentration (Cint) in μg kg
-1

 ww of DDT (top), Phe (middle) and 

DEHP (bottom) in the tissues of a lugworm ingesting PE (black) or PVC (grey) 

particles in the low pollution (LP) and high pollution (HP) scenarios. 
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Fig. 2 Predicted internal concentration (Cint) in μg kg-1 ww of DDT (top), Phe (middle) and 

DEHP (bottom) in the tissues of a marine fish ingesting PE (black) or PVC (grey) 

particles in the low pollution (LP) and high pollution (HP) scenarios. 
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Fig. 3 Predicted concentration (Cint) in μg kg-1 ww of DDT (top), Phe (middle) and DEHP 

(bottom) in the tissues of a seabird ingesting PE (black) or PVC (grey) particles in the 

low pollution (LP) and high pollution (HP) scenarios. 
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Relative importance of microplastics as a pathway for the transfer of 

hydrophobic organic chemicals to marine life 
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Table S1. Reported DDT, phenanthrene (Phe) and DEHP concentrations for low and high polluted sites and used in this study.  

 

POP Log Kow Reference 

HOC concentration (g/L) 

Reference 
Low High 

DDT 
6.36 Walker 

(2008) 
0.0002 0.023 (Wurl and Obbard, 2005) 

Phe 

4.5 

MacKay et 

al. (1993) 
0.00324 0.377 (Law et al., 1997) (Pérez-Carrera et al., 2007) 

DEHP 

7.5 
Neff 

(2002) 
0.0053 2.2 (Xie et al., 2005) (Matthiessen et al., 1993) 
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Table S2. (A) Reported amounts of plastic debris collected from a range of marine organisms and (B) reported gut retention time for 

sediments/anthropogenic particles 

 

Organism Plastic stomach content (g) Sampling year References 

Planktivorous fish  0.00157  2008 (Boerger et al., 2010) 

Harbour seals  24.4 
2001-2002 

2009-2010 

(Bravo Rebolledo et al., 2012) 

Cape Petrel  0.0201 1984-1987 (van Franeker and Bell, 1988) 

Southern fulmar  0.0106 1984-1987 (van Franeker and Bell, 1988) 

Seabirds  0.30  1987 (Blight and Burger, 1997) 

Northern fulmar  0.280  2003-2007 (van Franeker et al., 2011b) 

Northern fulmars  0.385  2009-2010 (Avery-Gomm et al., 2012) 
 

 

Organism Particle type Gut retention time (hours) References 

Arenicola marina sediment 2 
(Bock and Miller, 1999) 

(Chen and Mayer, 1999) 

Fish food 4-158 (Fänge and Grove, 1979) 

Seabird food 11 (Hilton et al., 2000) 

 

 

 

 

(A) (A) 

(B) 
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Table S3. Reported DDTs concentrations for a range of marine organisms  

Marine organism 
Sampling location 

Sampling 

time 

DDT concentration 

(g kg
-1

 wet weight) 
References 

Classification Species  p,p’-DDE p,p’-DDT  

Polychaeta 

Dendronereis spp. Malay Pinsula 1985 69-71 n.s (Everaarts et al., 1991) 

Arenicola marina Dutch Wadden Sea 1979 60-160 n.s (Duinker et al., 1983) 

Diopatra ornate 

Pista alata 
 

Coastal ocean, Southern 

California 

1995 13517* < 2.3 
(Zeng and Tran, 2002) 

Paraprionospio pinnata 1996 14798* < 9.2 

Mediterranean mussel 
Mitylus 

galloprovencialis 

Italian coasts 2002 

0.19-1.49 nd-0.24 

(Perugini et al., 2004) 

Norway lobster Nephrops norvegicus 0.10-0.36 nd-0.18 

Red mullet Mullus barbatus 0.31-2.23 nd-0.58 

European flying squid Sepia officinalis nd-0.39 nd-0.11 

Common cuttle-fish Totarodes sagitattus nd nd 

European anchovy Engraulis encrasicholus nd-0.30 nd-0.66 

European pilchard Sardina pilchardus 0.33-2.58 nd-0.36 

Atlantic mackerel Scomber scombrus 0.01-2.76 nd-0.51 

Bartail flathead Platycephalus indicus 

South China 2004 

19.5 8.40 

(Cheung et al., 2007) 
Snubnose poampano Trachinotus blochii 244 133 

Goldspotted rabbitfish Siganus punctatus 10.7 n.d. 

Tongue sole Cynoglossus robustus 12.6 n.d 

Northern Fulmar  Procellariidae Northern Baffin Bay 1998 
3093 (fat) 

149 (liver) 

360 (fat) 

10.1 (liver) 
(Buckman et al., 2004) 

Kelp gull eggs Larus dominicanus Maiquillahue Bay 

1998-1999 

151 (∑ DDTs) 

(Cifuentes et al., 2003) Pink-footed Shearwater 

eggs 
Puffinus creatopus Juan Fernandez Islands 163.1 (∑ DDTs) 

Black-footed albatross  

North Pacific 

1992-1993 
 35.5 

(Auman et al., 1997) 
Laysan albatross   11.5 

Black-footed albatross  
1997-1998 

13000-73000 1200-4400 
(Guruge et al., 2001) 

Laysan albatross  190-1400 3200-9500 

nd: not detected 
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Table S4. Reported phenanthrene (Phe) concentrations for a range of marine organisms  

Marine organism 

Sampling location Sampling time 

Phe 

concentration 

(g kg
-1 

wet 

weight) 

References 
Classification Species 

Marine 

mollusc 
Mytilus galloprovinclialis Western Mediterranean sea 2004-2006 4.44 (dry wt) (Galgani et al., 2011) 

Marine fish 

Doma  Mumbai transharbour, 

Maharashtra 
2006-2008 

0.61  (Dhananjayan and 

Muralidharan, 2012) Mandeli 0.99  

Brown spotted grouper 

Arabian Gulf 1997 

1.3 

(Al-Hassan et al., 2003) 

Yellow finned black Sea 

bream 
0.86 

River Shad 1.07 

Silvery Grunt 0.94 

Silvery Pomfret 1.31 

Scomberomorus 

commerson 
Western coast of 

Alexandria 
2005 

0.608 
(Said, 2007) 

Sphyraena sphyraena 338.76 
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Table S5. Reported DEHP concentrations for a range of marine organisms  

Marine organism 

Sampling location Sampling time 

DEHP 

concentration 

(g kg
-1

 wet 

weight) 

Reference 
Classification Species 

Polychaete Neanthes virens 
Portland, Maine, USA 1980 

380-490 
(Ray et al., 1983b) 

clams ns 110-170 

Fish 

Various fish species 

(liver) 
Tees Bay, United Kingdom ns 

43-85.9 
(Waldock, 1983) 

Various fish species 

(muscle) 
13-51.3 

n.s. not specified 
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Bioaccumulation models 1 

 2 

Approach A: 3 

The concentration of the pollutant in each species i (Ci in µg kg
-1

) was calculated with the 4 

assumption that an individual ingesting and egesting sufficient plastic over its life time to 5 

reach equilibrium between lipid and plastic debris, Eq.S1: 6 

 7 

𝐶𝑖 =  
𝐶𝑝 

𝐾𝑝𝑤
 ∙  𝐾𝑜𝑤 ∙ 𝑝𝑙𝑖𝑝         (Eq. S1) 8 

 9 

where  Cp  = concentration of the pollutant in plastic (µg kg
-1

) 10 

 Kpw = plastic water partition coefficient 11 

 Kow = octanol water partition coefficient  12 

 plip = lipid fraction of bird (kg kg
-1

) 13 

 14 

Approach B: 15 

The concentration of the pollutant in species i (Ci in µg kg
-1

), that species i would achieve 16 

after a lifelong plastic ingestion was calculated with the assumption that all pollutants sorbed 17 

onto plastic were transferred to the organisms using Eq.S2: 18 

 19 

𝐶𝑖 =  𝑘𝑝,𝑖𝑛  ∙ 𝑎 ∙ 𝐶𝑝         (Eq. S2) 20 

 21 
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where  kp,in  = plastic ingestion rate (kg kg
-1

 d
-1

) 22 

 a = lifespan of species i (d
-1

) 23 

Allometric regressions suggested a lifespan of 18 years and 398 days for the seabird and the 24 

fish, respectively (Hendriks, 2007; Lindstedt and Calder III, 1981), which was in agreement 25 

with reported lifespans for species of similar weights (Beukema and De Vlas, 1979; Botkin 26 

and Miller, 1974; Hennicke et al., 2012). For the lifespan of the lugworm, the reported value 27 

of 6 years was used (Beukema and De Vlas, 1979).  28 

Plastic ingestion rate was calculated as Eq.S3: 29 

  30 

𝑘𝑝,𝑖𝑛 =  𝛾𝑝  ∙ 𝑞𝑇 ∙ 𝑤−𝜅         (Eq. S3) 31 

 32 

where  γp  = Plastic ingestion coefficient (kg
К 

d
-1

) 33 

qT  = Temperature correction factor (kg kg
-1

) 34 

w = Species weight (kg) 35 

 κ = rate coefficient (-) 36 

It should be noted that Eq.S1 gives a theoretical limit to Eq.S2, as no additional pollutants 37 

will be absorbed from the plastic after equilibrium between the lipid fraction of the species 38 

and the plastic is reached. Approach B should therefore help to indicate whether lifelong 39 

plastic ingestion could be sufficient to reach equilibrium between the plastic and the species.  40 

 41 

Approach C: 42 

In approach C, we applied the OMEGA model to calculate internal concentration of 43 

pollutants in species of different trophic levels such as a seabird, a fish and a lugworm. The 44 
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model is described in detail in Hendriks et al. (2001)(Hendriks et al., 2001b). Here, we only 45 

describe briefly the relevant processes used for this study.  46 

The internal concentration of species i (Ci) at steady state equals the ratio of the sum of 47 

uptake divided by the sum of elimination. In this study, we considered uptake from water 48 

(kw,X,in · Cw), from food (kf,X,in · Cfood) and from plastic (kp,X,in · Cp) as well as the elimination 49 

with water (kw,X,out), food (kf,X,out), plastic (kp,X,out) and biomass dilution from growth or 50 

reproduction (kb,X,out) as shown in Eq.S4: 51 

 52 

𝐶𝑖 =  
𝑘𝑤,𝑋,𝑖𝑛 ∙ 𝐶𝑤 + 𝑘𝑓,𝑋,𝑖𝑛 ∙ 𝐶𝑓𝑜𝑜𝑑 + 𝑘𝑝,𝑋,𝑖𝑛 ∙ 𝐶𝑝

𝛴𝑘𝑤,𝑋,𝑜𝑢𝑡 + 𝑘𝑓,𝑋,𝑜𝑢𝑡 + 𝑘𝑝,𝑋,𝑜𝑢𝑡 + 𝑘𝑏,𝑋,𝑜𝑢𝑡
      (Eq.S4) 53 

 54 

In this study, we neglected the uptake from air as well as elimination by metabolism. The 55 

uptake and excretion via water was calculated using Eqs.S5 and S6 (see Table S6 for the 56 

definition of the symbols): 57 

 58 

𝑘𝑤,𝑋,𝑖𝑛 =  
𝑤−𝑘

𝜌𝐻2𝑂,𝑤+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤
+ 

1

𝛾𝑤

         (Eq. S5) 59 

𝑘𝑤,𝑋,𝑜𝑢𝑡 =  
1

𝑝𝑙𝑖𝑝,𝑖∙(𝐾𝑜𝑤−1)+1
∙

𝑤−𝑘

𝜌𝐻2𝑂,𝑤+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤
+ 

1

𝛾𝑤

      (Eq. S6) 60 

 61 

The uptake from food and excretion with faeces were modeled using Eqs. S7 and S8 (see 62 

Table S6 for definition of the symbols): 63 

 64 

𝑘𝑓,𝑋,𝑖𝑛 =
1

1−𝑝𝑓
 ∙

1

𝑝𝑙𝑖𝑝,𝑖−1  ∙ (𝐾𝑜𝑤−1)+1
∙

𝑤−𝑘

𝜌𝐻2𝑂,𝑓+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤∙𝑞𝑇
+ 

1

𝑝𝑙𝑖𝑝,𝑖−1∙𝐾𝑜𝑤 ∙(1−𝑝𝑓)∙𝛾𝑓∙𝑞𝑇

  (Eq. S7) 65 

𝑘𝑓,𝑋,𝑜𝑢𝑡 =
1

𝑝𝑙𝑖𝑝,𝑖  ∙ (𝐾𝑜𝑤−1)+1
∙

𝑤−𝑘

𝜌𝐻2𝑂,𝑓+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤∙𝑞𝑇
+ 

1

𝑝𝑙𝑖𝑝,𝑖−1∙ 𝐾𝑜𝑤∙ (1−𝑝𝑓)∙𝛾𝑓∙𝑞𝑇

   (Eq. S8) 66 
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 67 

The elimination by biomass dilution was modeled as followed (see Table S6 for definition of 68 

the symbols): 69 

 70 

𝑘𝑏,𝑋,𝑜𝑢𝑡 = 𝛾𝑏 ∙ 𝑞𝑇 ∙ 𝑤−𝑘        (Eq. S9) 71 

 72 

Plastic was treated like undigested food, such that uptake and excretion of the pollutant with 73 

plastic was estimated using Eq. S10 and Eq. S11: 74 

 75 

𝑘𝑝,𝑋,𝑖𝑛 =
1

1−𝑝𝑝
 ∙

1

𝐾𝑝𝑤
∙

𝑤−𝑘

𝜌𝐻2𝑂,𝑓+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤∙𝑞𝑇
+ 

1

𝐾𝑝𝑤∙(1−𝑝𝑝)∙𝛾𝑝∙𝑞𝑇

     (Eq. S10) 76 

𝑘𝑝,𝑋,𝑜𝑢𝑡 =
1

𝑝𝑙𝑖𝑝,𝑖  ∙ (𝐾𝑜𝑤−1)+1
∙

𝑤−𝑘

𝜌𝐻2𝑂,𝑓+ 
𝜌𝐶𝐻2,𝑖

𝐾𝑜𝑤∙𝑞𝑇
+ 

1

𝐾𝑝𝑤∙(1−𝑝𝑝)∙𝛾𝑝∙𝑞𝑇

    (Eq. S11) 77 

The pollutant concentration in food was estimated using a standard food chain 78 

bioaccumulation model. It was assumed, that the seabird (trophic level 4) feeds on the marine 79 

fish species (trophic level 3), which in turn feeds on zooplankton feeding on phytoplankton. 80 

The potential transfer of plastic debris within the food chain was neglected. Lugworms are 81 

detritivores that feed on organic carbon contained in soil (typical marine sediment with 1% of 82 

organic carbon). The pollutant concentration in wet organic matter in sediment representing 83 

Cfood was calculated using Eq. S12: 84 

 85 

𝐶𝑓𝑜𝑜𝑑 =   𝐾𝑤𝑜𝑚 ∙ 𝐶𝑤         (Eq. S12) 86 

 87 

And the wet organic matter- water partition coefficient was calculated assuming that wet 88 

organic matter contains 90% water, and 50% of the dry organic matter consists of organic 89 

carbon (Eq. S13): 90 

𝐾𝑤𝑜𝑚 =  0.1 ∙ 0.5 ∙  𝐾𝑜𝑐        (Eq. S13) 91 
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Table S6. Overview of processes, rates and parameters used in the model 92 

Symbol Description Unit Typical value Reference 

a Lifespan d Table S7  

Cw Concentration in water µg L-1 variable  

Cfood Concentration in food µg kg-1 variable  

Cp Concentration in plastic µg kg-1 variable  

Ci Concentration in organism µg kg-1 Eq. S1 Hendriks et al., 2001 

γw water absorption-excretion coefficient 

water breathing 

air breathing 

 

kgК d-1 

kgК d-1 

 

200 

0.2 

 

Hendriks et al., 2001 

Hendriks et a.l, 2001 

γf Food ingestion coefficient kgК d-1 0.005 Hendriks et al., 2001 

γb Biomass (re)production coefficient kgК d-1 0.0006 Hendriks et al., 2001 

γp Plastic ingestion coefficient kgК d-1 0.01 . γf 

0.05 · γf 

0.50 . γf 

This study 

kw,X,in Rate constant for pollutant absorption from water L kg-1 d-1 Eq. S5 Hendriks et al., 2001 

kf,X,in Rate constant for pollutant absorption from food kg kg-1 d-

1 

Eq. S7 Hendriks et al., 2001 

kp,X,in Rate constant for pollutant absorption from plastic kg kg-1 d-

1 

Eq. S10 Hendriks et al., 2001 

kw,X,out Rate constant for pollutant excretion with water d-1 Eq. S6 Hendriks et al., 2001 

kf,X,out Rate constant for pollutant excretion with egestion d-1 Eq. S8 Hendriks et al., 2001 

kp,X,out Rate constant for pollutant excretion with water  Eq. S11 Hendriks et al.,  2001 

kb,X,out Rate constant for biomass dilution by growth or 

reproduction 

d-1 Eq. S9 Hendriks et al.,  2001 

Koc Organic carbon water partition coefficient [-] variable KocWin, Episuite (EPA, 

2013) 

Kow Octanol-water partition coefficient [-] variable  

Kpw Plastic-water partition coefficient [-] Variable Bakir et al., 2014 

 Log Kpw Phe-PVC 

Log Kpw Phe-PE 

Log Kpw DDT-PVC 

Log Kpw DDT-PE 

Log Kpw DEHP-PVC 

Log Kpw DEHP-PE 

 3.36 

4.71 

5.02 

4.99 

4.08 

4.99 

 

Ksw om Wet organic matter water partition coefficient [-] Eq. S13  

κ Rate exponent [-] 0.25 Hendriks et al., 2001 

poc Fraction of organic carbon in soil kg kg-1 0.01 Kile et al., 1995 

pf Fraction of food assimilated 

Herbivore 

carnivore 

 

kg kg-1 

kg kg-1 

 

0.4 

0.8 

 

Hendriks et al., 2001 

Hendriks et al., 2001 

pp Fraction of plastic assimilated kg kg-1 0 Assumption in this study 

Plip,i Fraction of neutral lipid in organism (i) or in food (i-

1) 

kg kg-1 Table S7  

qT Temperature correction factor 

Cold-blood 

Warm-blooded 

 

kg kg-1 

kg kg-1 

 

1 

10 

 

Hendriks et al., 2001 

Hendriks et al., 2001 

ρCH2,i Lipid layer resistance 

Plants 

Animals 

 

d kg-1 

d kg-1 

 

4.6 · 103 

68 

 

Hendriks et al., 2001 

Hendriks et al., 2001 

ρH20,w Water layer resistance from/to water d kg-К 2.8 · 10-3 Hendriks et al., 2001 

ρH20,f Water layer resistance from/to food d kg-К 1.1 · 10-5 Hendriks et al., 2001 

X Substance [-]   

wi Species weight kg Table S7  

N.B. Koc was calculated using KocWin v2.00 in Episuite. Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.1 (EPA, 2013).  93 

 94 
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Table S7. Characteristics of the species used in the model. Reported are their trophic level 95 

(TL), mass (w, in kg), lifespan (a, in days) and their lipid content (plip,i). Also listed 96 

are their food source, and whether the species was a target species (TS) in the 97 

model or a species in the food chain (FC).  98 

 99 

Species Seabird Marine fish Zooplankton Phytoplankton Lugworm 

TL 4 3 2 1 2 

w  1 0.0075 10
-6

 10
-12

 0.004 

a 6424
a
 398

b
 - - 2190

c
 

Plip 0.1
d
 0.05

d
 0.03

d
 0.01

d
 0.03

d
 

Food TL 3 

(fish) 

TL 2  

(Zooplankton) 

TL 1 

(phytoplankton) 

none Organic carbon in 

soil 

Role TS TS and FC FC FC TS 
a
 (Lindstedt and Calder III, 1981; Hennicke et al., 2012; Botkin and Miller, 1974) 100 

b
 (Hendricks, 2007; Catul et al., 2011) 101 

c
 e.g. (Beukema and De Vlas, 1979) 102 

d
 sum of neutral and polar lipid (Hendricks et al., 2005)  103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 
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Model output: 116 

Table S8. Estimated concentration of DDT, phenanthrene (Phe) and DEHP in the lugworm 117 

Arenicola marina following ingestion of contaminated PE and PVC for scenarios 118 

A, B and C.  119 

 120 

 121 

Lugworm

Approaches 1% 5% 50% 1% 5% 50%

A 13.75 13.75 13.75 1581 1581 1581

B 10.97 42.19 422 1261 4852 48516

C (incl. plastic) 11.77 11.92 12.80 1354 1371 1472

C (excl. plastic) 11.71 11.71 11.71 1347 1347 1347

A 3.07 3.07 3.07 358 358 358

B 94.51 363 3635 10997 42295 422948

C (incl. plastic) 3.09 3.09 3.08 360 360 359

C (excl. plastic) 3.09 3.09 3.09 360 360 360

A 5028 5028 5028 2087103 2087103 2087103

B 295 1136 11365 122652 471739 4717388

C (incl. plastic) 1090 1187 2070 452441 492708 859370

C (excl. plastic) 1055 1055 1055 437801 437801 437801

Approaches 1% 5% 50% 1% 5% 50%

A 13.75 13.75 13.75 1581 1581 1581

B 11.86 45.62 456 1364 5247 52468

C (incl. plastic) 11.77 11.94 12.84 1354 1373 1476

C (excl. plastic) 11.71 11.71 11.71 1347 1347 1347

A 3.07 3.07 3.07 358 358 358

B 4.19 16.12 161 488 1875 18754

C (incl. plastic) 3.09 3.09 3.09 360 360 360

C (excl. plastic) 3.09 3.09 3.09 360 360 360

A 5028 5028 5028 2087103 2087103 2087103

B 35.75 138 1375 14840 57077 570767

C (incl. plastic) 1059 1071 1214 439586 444647 503768

C (excl. plastic) 1055 1055 1055 437801 437801 437801

PVC

[DDT] in g kg-1 ww

[Phe] in g kg-1 ww

[DEHP] in g kg-1 ww

low pollution

[DDT] in g kg-1 ww

high pollution

PE

[Phe] in g kg-1 ww

[DEHP] in g kg-1 ww
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Table S9. Estimated concentration of DDT, phenanthrene (Phe) and DEHP in a marine fish 122 

following ingestion of contaminated PE and PVC for scenarios A, B and C. 123 

Highlighted in red are examples of the neutral transfer of plastic co-contaminants 124 

following ingestion. 125 

 126 

Fish

Approaches 1% 5% 50% 1% 5% 50%

A 22.91 22.91 22.91 2634 2634 2634

B 1.31 6.55 66 151 753 7535

C (incl. plastic) 39.23 38.14 31.63 4512 4386 3638

C (excl. plastic) 39.53 39.53 39.53 4546 4546 4546

A 5.12 5.12 5.12 596 596 596

B 11.29 56 565 1314 6569 65686

C (incl. plastic) 5.26 5.25 5.20 613 611 605

C (excl. plastic) 5.27 5.27 5.27 613 613 613

A 8380 8380 8380 3478505 3478505 3478505

B 35 176 1765 14653 73264 732639

C (incl. plastic) 9488 9477 9370 3938468 3934025 3889502

C (excl. plastic) 9491 9491 9491 3939593 3939593 3939593

Approaches 1% 5% 50% 1% 5% 50%

A 22.91 22.91 22.91 2634 2634 2634

B 1.42 7.09 71 163 815 8149

C (incl. plastic) 39.21 38.04 31.31 4509 4374 3601

C (excl. plastic) 39.53 39.53 39.53 4546 4546 4546

A 5.12 5.12 5.12 596 596 596

B 0.50 2.50 25 58 291 2913

C (incl. plastic) 5.27 5.27 5.26 613 613 612

C (excl. plastic) 5.27 5.27 5.27 613 613 613

A 8380 8380 8380 3478505 3478505 3478505

B 4.27 21 214 1773 8864 88644

C (incl. plastic) 9491 9489 9475 3939456 3938912 3932874

C (excl. plastic) 9491 9491 9491 3939593 3939593 3939593

PVC

[DDT] in g kg-1 ww

[Phe] in g kg-1 ww

[DEHP] in g kg-1 ww

PE

[DDT] in g kg-1 ww

low pollution high pollution

[Phe] in g kg-1 ww

[DEHP] in g kg-1 ww
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Table S10. Estimated concentration of DDT, phenanthrene (Phe) and DEHP in a seabird 127 

following ingestion of contaminated PE and PVC for scenarios A, B and C. 128 

Highlighted in red are examples of the neutral transfer of plastic co-contaminants 129 

following ingestion.  130 

 131 

 132 

Seabird

Approaches 1% 5% 50% 1% 5% 50%

A 45.82 45.82 45.82 5269 5269 5269

B 62.24 311.22 3112 7158 35790 357900

C (incl. plastic) 175.61 166.48 114.14 20195 19145 13126

C (excl. plastic) 178.12 178.12 178.12 20484 20484 20484

A 10.25 10.25 10.25 1192 1192 1192

B 536.29 2681 26814 62401 312007 3120067

C (incl. plastic) 18.07 13.21 10.71 2103 1537 1246

C (excl. plastic) 23.81 23.81 23.81 2770 2770 2770

A 16760 16760 16760 6957011 6957011 6957011

B 1677 8384 83836 695998 3479990 34799900

C (incl. plastic) 39301 39166 37781 16313675 16257409 15682649

C (excl. plastic) 39335 39335 39335 16327888 16327888 16327888

Approaches 1% 5% 50% 1% 5% 50%

A 45.82 45.82 45.82 5269 5269 5269

B 67.31 336.57 3366 7741 38705 387055

C (incl. plastic) 175.41 165.62 111.64 20172 19046 12838

C (excl. plastic) 178.12 178.12 178.12 20484 20484 20484

A 10.25 10.25 10.25 1192 1192 1192

B 23.78 118.90 1189 2767 13835 138348

C (incl. plastic) 23.38 21.91 15.44 2721 2549 1796

C (excl. plastic) 23.81 23.81 23.81 2770 2770 2770

A 16760 16760 16760 6957011 6957011 6957011

B 202.87 1014 10144 84210 421051 4210514

C (incl. plastic) 39331 39315 39130 16326165 16319283 16242797

C (excl. plastic) 39335 39335 39335 16327888 16327888 16327888

PVC

[DDT] in g kg-1 ww

[Phe] in g kg-1 ww

[DEHP] in g kg-1 ww

PE

[DDT] in g kg-1 ww

low pollution high pollution

[Phe] in g kg-1 ww

[DEHP] in g kg-1 ww
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