24 research outputs found

    Carpal tunnel syndrome and the "double crush" hypothesis: a review and implications for chiropractic

    Get PDF
    Upton and McComas claimed that most patients with carpal tunnel syndrome not only have compressive lesions at the wrist, but also show evidence of damage to cervical nerve roots. This "double crush" hypothesis has gained some popularity among chiropractors because it seems to provide a rationale for adjusting the cervical spine in treating carpal tunnel syndrome. Here I examine use of the concept by chiropractors, summarize findings from the literature, and critique several studies aimed at supporting or refuting the hypothesis. Although the hypothesis also has been applied to nerve compressions other than those leading to carpal tunnel syndrome, this discussion mainly examines the original application – "double crush" involving both cervical spinal nerve roots and the carpal tunnel. I consider several categories: experiments to create double crush syndrome in animals, case reports, literature reviews, and alternatives to the original hypothesis. A significant percentage of patients with carpal tunnel syndrome also have neck pain or cervical nerve root compression, but the relationship has not been definitively explained. The original hypothesis remains controversial and is probably not valid, at least for sensory disturbances, in carpal tunnel syndrome. However, even if the original hypothesis is importantly flawed, evaluation of multiple sites still may be valuable. The chiropractic profession should develop theoretical models to relate cervical dysfunction to carpal tunnel syndrome, and might incorporate some alternatives to the original hypothesis. I intend this review as a starting point for practitioners, educators, and students wishing to advance chiropractic concepts in this area

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase

    Get PDF
    For certain applications of the polymerase chain reaction (PCR), it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq) DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We used the forward mutation assay to compare the fidelity of Taq polymerase and Thermotoga maritima (ULTMA™) DNA polymerase, an enzyme that does have proofreading activity. We did not find significant differences in the fidelity of either enzyme, even when using optimal buffer conditions, thermal cycling parameters, and number of cycles (0.2% and 0.13% error rates for ULTMA™ and Taq, respectively, after reading about 3,000 bases each). We conclude that for sequencing purposes there is no difference in using a DNA polymerase that contains an inherent 3' to 5' exonuclease activity for DNA amplification. Perhaps the specificity and fidelity of PCR are complex issues influenced by the nature of the target sequence, as well as by each PCR component

    The myokinetic control interface: tracking implanted magnets as a means for prosthetic control

    Get PDF
    Upper limb amputation deprives individuals of their innate ability to manipulate objects. Such disability can be restored with a robotic prosthesis linked to the brain by a human-machine interface (HMI) capable of decoding voluntary intentions, and sending motor commands to the prosthesis. Clinical or research HMIs rely on the interpretation of electrophysiological signals recorded from the muscles. However, the quest for an HMI that allows for arbitrary and physiologically appropriate control of dexterous prostheses, is far from being completed. Here we propose a new HMI that aims to track the muscles contractions with implanted permanent magnets, by means of magnetic field sensors. We called this a myokinetic control interface. We present the concept, the features and a demonstration of a prototype which exploits six 3-axis sensors to localize four magnets implanted in a forearm mockup, for the control of a dexterous hand prosthesis. The system proved highly linear (R2= 0.99) and precise (1% repeatability), yet exhibiting short computation delay (45 ms) and limited cross talk errors (10% the mean stroke of the magnets). Our results open up promising possibilities for amputees, demonstrating the viability of the myokinetic approach in implementing direct and simultaneous control over multiple digits of an artificial hand

    Guidance for gynecologists utilizing telemedicine during COVID‐19 pandemic based on expert consensus and rapid literature reviews

    No full text
    Background COVID-19 has impacted delivery of outpatient gynecology and shifted care toward use of telemedicine. Objective To rapidly review literature and society guidelines and create expert consensus to provide guidance regarding management of outpatient gynecology scenarios via telemedicine. Search strategy Searches were conducted in Medline and Cochrane databases from inception through April 15, 2020. Selection criteria Literature searches were conducted for articles on telemedicine and abnormal uterine bleeding, chronic pelvic pain, endometriosis, vaginitis, and postoperative care. Searches were restricted to available English language publications. Data collection and analysis Expedited literature review methodology was followed and 10 943 citations were single-screened. Full-text articles and relevant guidelines were reviewed and narrative summaries developed. Main results Fifty-one studies on the use of telemedicine in gynecology were found. Findings were reported for these studies and combined with society guidelines and expert consensus on four topics (abnormal uterine bleeding, chronic pelvic pain and endometriosis, vaginal discharge, and postoperative care). Conclusions Guidance for treating gynecological conditions via telemedicine based on expedited literature review, review of society recommendations, and expert consensus is presented. Due to minimal evidence surrounding telemedicine and gynecology, a final consensus document is presented here that can be efficiently used in a clinical setting
    corecore