62 research outputs found

    Cirrhosis: Morphologic dynamics for the nonmorphologist

    Full text link
    Cirrhosis is an irreversible end-stage liver disease characterized by septate scars dividing a distorted liver into nodules. It generates through a sequence of dynamic changes and once it develops, it may alter its appearance through variations in secondary factors, such as injury and nutrition. The different classification schemes have, unfortunately, only served to make cirrhosis static in our thinking. Stationary morphologic characteristics are of value only if they can be correlated with etiology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44380/1/10620_2005_Article_BF02231300.pd

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Spring and latch dynamics can act as control pathways in ultrafast systems

    No full text
    Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities
    corecore