165 research outputs found

    Unified Inverse Depth Parametrization for Monocular SLAM

    No full text

    Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency

    Get PDF
    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8 + T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8 + lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL

    Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs

    Get PDF
    Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics

    The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Get PDF
    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage

    Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium

    Get PDF
    Plastidial (pt) and mitochondrial (mt) genes usually show maternal inheritance. Non-Mendelian, biparental inheritance of plastids was first described by Baur (Z Indukt Abstamm Vererbungslehre 1:330–351, 1909) for crosses between Pelargonium cultivars. We have analyzed the inheritance of pt and mtDNA by examining the progeny from reciprocal crosses of Pelargoniumzonale and P. inquinans using nucleotide sequence polymorphisms of selected pt and mt genes. Sequence analysis of the progeny revealed biparental inheritance of both pt and mtDNA. Hybrid plants exhibited variegation: our data demonstrate that the inquinans chloroplasts, but not the zonale chloroplasts bleach out, presumably due to incompatibility of the former with the hybrid nuclear genome. Different distribution of maternal and paternal sequences could be observed in different sectors of the same leaf, in different leaves of the same plant, and in different plants indicating random segregation and sorting-out of maternal and paternal plastids and mitochondria in the hybrids. The substantial transmission of both maternal and paternal mitochondria to the progeny turns Pelargonium into a particular interesting subject for studies on the inheritance, segregation and recombination of mt genes

    Species Diversity and Phylogeographical Affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada

    Get PDF
    The region of Churchill, Manitoba, contains a wide variety of habitats representative of both the boreal forest and arctic tundra and has been used as a model site for biodiversity studies for nearly seven decades within Canada. Much previous work has been done in Churchill to study the Daphnia pulex species complex in particular, but no study has completed a wide-scale survey on the crustacean species that inhabit Churchill's aquatic ecosystems using molecular markers. We have employed DNA barcoding to study the diversity of the Branchiopoda (Crustacea) in a wide variety of freshwater habitats and to determine the likely origins of the Churchill fauna following the last glaciation. The standard animal barcode marker (COI) was sequenced for 327 specimens, and a 3% divergence threshold was used to delineate potential species. We found 42 provisional and valid branchiopod species from this survey alone, including several cryptic lineages, in comparison with the 25 previously recorded from previous ecological works. Using published sequence data, we explored the phylogeographic affinities of Churchill's branchiopods, finding that the Churchill fauna apparently originated from all directions from multiple glacial refugia (including southern, Beringian, and high arctic regions). Overall, these microcrustaceans are very diverse in Churchill and contain multiple species complexes. The present study introduces among the first sequences for some understudied genera, for which further work is required to delineate species boundaries and develop a more complete understanding of branchiopod diversity over a larger spatial scale

    Computer-Based Screening of Functional Conformers of Proteins

    Get PDF
    A long-standing goal in biology is to establish the link between function, structure, and dynamics of proteins. Considering that protein function at the molecular level is understood by the ability of proteins to bind to other molecules, the limited structural data of proteins in association with other bio-molecules represents a major hurdle to understanding protein function at the structural level. Recent reports show that protein function can be linked to protein structure and dynamics through network centrality analysis, suggesting that the structures of proteins bound to natural ligands may be inferred computationally. In the present work, a new method is described to discriminate protein conformations relevant to the specific recognition of a ligand. The method relies on a scoring system that matches critical residues with central residues in different structures of a given protein. Central residues are the most traversed residues with the same frequency in networks derived from protein structures. We tested our method in a set of 24 different proteins and more than 260,000 structures of these in the absence of a ligand or bound to it. To illustrate the usefulness of our method in the study of the structure/dynamics/function relationship of proteins, we analyzed mutants of the yeast TATA-binding protein with impaired DNA binding. Our results indicate that critical residues for an interaction are preferentially found as central residues of protein structures in complex with a ligand. Thus, our scoring system effectively distinguishes protein conformations relevant to the function of interest

    The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats

    Get PDF
    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes

    Bisulfite Sequencing Reveals That Aspergillus flavus Holds a Hollow in DNA Methylation

    Get PDF
    Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species

    Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing

    Get PDF
    BackgroundHigh pressure processing (HPP; i.e. 100-600MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance.ResultsNone of the tested strains were tolerant to 600MPa. A reduction of more than 5 log(10) was observed for all strains after 1min 600MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400MPa for 1min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains.ConclusionsL. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.Peer reviewe
    corecore