12 research outputs found

    Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study

    Get PDF
    Correction: Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study. PLoS ONE 9(1): 10.1371/annotation/dbb84118-9ada-43e4-8734-8f8322be1a59. doi: 10.1371/annotation/dbb84118-9ada-43e4-8734-8f8322be1a59Understanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation. The curves of native state depletion also follow high-order irreversible kinetics. The analysis is consistent with the existence of low-populated and heterogeneous oligomeric precursors of fibrillation that form by association of partially unfolded protein monomers. An increase in NaCl concentration accelerates fibrillation but reduces the apparent order of the nucleation kinetics; and a double mutant (K43A, N47A) Spc-SH3 domain, largely unfolded under native conditions and prone to oligomerize, fibrillates with apparent first order kinetics. On the light of these observations, we propose a simple kinetic model for the nucleation event, in which the monomer conformational unfolding and the oligomerization of an amyloidogenic intermediate are rapidly pre-equilibrated. A conformational change of the polypeptide chains within any of the oligomers, irrespective of their size, is the rate-limiting step leading to the amyloid nuclei. This model is able to explain quantitatively the initial rates of aggregation and the observed variations in the apparent order of the kinetics and, more importantly, provides crucial thermodynamic magnitudes of the processes preceding the nucleation. This kinetic approach is simple to use and may be of general applicability to characterize the amyloidogenic intermediates and oligomeric precursors of other disease-related proteins.This work was financed by the Andalucía Government (grant FQM-02838), the Spanish Ministry of Science and Innovation (grant BIO2009-07317), and the European Regional Development Fund of the European Union. D. Ruzafa is recipient of a research fellowship from the F.P.U. program of the Spanish Ministry of Education. L. Varela is financed by the G.R.E.I.B. program of the University of Granada

    Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    Get PDF
    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited

    Fresh Acid-Curd Cheese Varieties

    No full text

    Ultrasonic force microscopy for nanomechanical characterization of early and late-stage amyloid-β peptide aggregation

    Get PDF
    The aggregation of amyloid-β peptides into protein fibres is one of the main neuropathological features of Alzheimer’s disease (AD). While imaging of amyloid-β aggregate morphology in vitro is extremely important for understanding AD pathology and development of aggregation inhibitors, unfortunately, potentially highly toxic early aggregates are difficult to observe by current electron microscopy and atomic force microscopy (AFM) methods due to low contrast and variability of peptide attachment to the substrate. Here, we use poly-L-Lysine (PLL) surface that captures all protein components from monomers to fully formed fibres, followed by nanomechanical mapping via Ultrasonic Force Microscopy (UFM), which marries high spatial resolution and nanomechanical contrast with non-destructive nature of tapping mode AFM. For the main putative AD pathogenic component, Aβ1-42, the PLL-UFM approach reveals the morphology of oligomers, protofibrils and mature fibres, and finds that a fraction of small oligomers is still present at later stages of fibril assembly

    Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism

    No full text
    Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17 amino acid flanking sequence (httNT) N-terminal to the polyQ in the toxic huntingtin exon1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation the httNT peptide is a compact coil that resists aggregation. When polyQ is fused to this sequence, it induces in httNT, in a repeat-length dependent fashion, a more extended conformation that greatly enhances its aggregation into globular oligomers with httNT cores and exposed polyQ. In a second step, a new, amyloid-like aggregate is formed with a core composed of both httNT and polyQ. The results indicate unprecedented complexity in how primary sequence controls aggregation within a substantially disordered peptide, and have implications for the molecular mechanism of Huntington's disease. There are nine known expanded CAG repeat diseases, in which expansion of a disease protein's polyglutamine (polyQ) sequence beyond a threshold repeat length causes progressive neurodegeneration through a predominantly gain-of-function mechanism 1. In Huntington's disease (HD) the repeat length threshold is about 37 glutamines 2. A majo

    Carbohydrate Fermentation, Energy Transduction and Gas Metabolism in the Human Large Intestine

    No full text
    corecore