110 research outputs found

    Development of a practice guideline for dietary counselling of children with IgE-mediated food allergy

    Get PDF
    Purpose The incidence of food allergy is increasing globally and whilst there is consensus that dietitians should be involved in its management, the roles that dietitians should fulfill differ between different guidelines and the description of tasks remains unclear. Currently, no Swiss guideline exists to assist dietitians in counselling children with food allergies. There is a need for recommendations that will guide dietitians through the counselling process. The aim of this project was to create a practice guideline for dietary counselling of children with food allergy. Methods Practice guidelines were developed following the Academy of Nutrition and Dietetics stepwise approach. The process consisted of six steps: (1) Determine the scope oft he guideline. (2) Conduct a systematic review. (3) Draft the guideline recommendations using the Nutrition Care Process (NCP) as a framework. (4) Finalise the guideline during a face-to-face meeting. (5) Conduct internal and external review and revise accordingly. (6) Publish guideline. Results The process resulted in 25 recommendations for dietary counselling. Most recommendations are based on expert opinion only, due to the lack of studies in this field and showed similar levels of consensus between the expert group and external review by allergists. However, there were nine recommendations where the consensus differed. Conclusion This guideline provides a comprehensive guide to dietary counselling for food allergy by dietitians in Switzerland. It will inform best practice and improve patient-centred care and encourage a consistent approach, but it will need to be reviewed and updated as more robust evidence is produced

    Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy

    The Structure of Tumor Endothelial Marker 8 (TEM8) Extracellular Domain and Implications for Its Receptor Function for Recognizing Anthrax Toxin

    Get PDF
    Anthrax toxin, which is released from the Gram-positive bacterium Bacillus anthracis, is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds a receptor on the surface of the target cell and further assembles into a homo-heptameric pore through which EF and LF translocate into the cytosol. Two distinct cellular receptors for anthrax toxin, TEM8/ANTXR1 and CMG2/ANTXR2, have been identified, and it is known that their extracellular domains bind PA with low and high affinities, respectively. Here, we report the crystal structure of the TEM8 extracellular vWA domain at 1.7 Å resolution. The overall structure has a typical integrin fold and is similar to that of the previously published CMG2 structure. In addition, using structure-based mutagenesis, we demonstrate that the putative interface region of TEM8 with PA (consisting of residues 56, 57, and 154–160) is responsible for the PA-binding affinity differences between the two receptors. In particular, Leu56 was shown to be a key factor for the lower affinity of TEM8 towards PA compared with CMG2. Because of its high affinity for PA and low expression in normal tissues, an isolated extracellular vWA domain of the L56A TEM8 variant may serve as a potent antitoxin and a potential therapeutic treatment for anthrax infection. Moreover, as TEM8 is often over-expressed in tumor cells, our TEM8 crystal structure may provide new insights into how to design PA mutants that preferentially target tumor cells

    Environmental pleiotropy and demographic history direct adaptation under antibiotic selection

    Get PDF
    Evolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated-termed 'environmental pleiotropy'-may determine which alleles are ultimately favoured. A population's demographic history-its size over time-influences the variation present. Although demographic history is known to affect the probability of evolutionary rescue, how it interacts with environmental pleiotropy during severe and sustained environmental change remains unexplored. Here, we demonstrate how these factors interact during antibiotic resistance evolution, a key example of evolutionary rescue fuelled by pre-existing mutations with pleiotropic fitness effects. We combine published data with novel simulations to characterise environmental pleiotropy and its effects on resistance evolution under different demographic histories. Comparisons among resistance alleles typically revealed no correlation for fitness-i.e., neutral pleiotropy-above and below the sensitive strain's minimum inhibitory concentration. Resistance allele frequency following experimental evolution showed opposing correlations with their fitness effects in the presence and absence of antibiotic. Simulations demonstrated that effects of environmental pleiotropy on allele frequencies depended on demographic history. At the population level, the major influence of environmental pleiotropy was on mean fitness, rather than the probability of evolutionary rescue or diversity. Our work suggests that determining both environmental pleiotropy and demographic history is critical for predicting resistance evolution, and we discuss the practicalities of this during in vivo evolution

    Linking Employee Stakeholders to Environmental Performance: The Role of Proactive Environmental Strategies and Shared Vision

    Get PDF
    Drawing on the natural-resource-based view (NRBV), we propose that employee stakeholder integration is linked to environmental performance through firms’ proactive environmental strategies, and that this link is contingent on shared vision. We tested our model with a cross-country and multi-industry sample. In support of our theory, results revealed that firms’ proactive environmental strategies translated employee stakeholder integration into environmental performance. This relationship was pronounced for high levels of shared vision. Our findings demonstrate that shared vision represents a key condition for advancing the corporate greening agenda through proactive environmental strategies. We discuss implications for the CSR and the environmental management literatures, with a particular focus on the NRBV and stakeholder integration debates

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore