137 research outputs found
Appointing Women to Boards: Is There a Cultural Bias?
Companies that are serious about corporate governance and business ethics are turning their attention to gender diversity at the most senior levels of business (Institute of Business Ethics, Business Ethics Briefing 21:1, 2011). Board gender diversity has been the subject of several studies carried out by international organizations such as Catalyst (Increasing gender diversity on boards: Current index of formal approaches, 2012), the World Economic Forum (Hausmann et al., The global gender gap report, 2010), and the European Board Diversity Analysis (Is it getting easier to find women on European boards? 2010). They all lead to reports confirming the overall relatively low proportion of women on boards and the slow pace at which more women are being appointed. Furthermore, the proportion of women on corporate boards varies much across countries. Based on institutional theory, this study hypothesizes and tests whether this variation can be attributed to differences in cultural settings across countries. Our analysis of the representation of women on boards for 32 countries during 2010 reveals that two cultural characteristics are indeed associated with the observed differences. We use the cultural dimensions proposed by Hofstede (Culture’s consequences: International differences in work-related values, 1980) to measure this construct. Results show that countries which have the greatest tolerance for inequalities in the distribution of power and those that tend to value the role of men generally exhibit lower representations of women on boards
The influence of elastic orthotic belt on sagittal profile in adolescent idiopathic thoracic scoliosis: a comparative radiographic study with Milwaukee brace
<p>Abstract</p> <p>Background</p> <p>The effectiveness of bracing on preventing curve progression in coronal plane for mild and moderate adolescent idiopathic scoliosis (AIS) patients has been confirmed by previous radiographic researches. However, a hypokyphotic effect on the sagittal plane has been reported by a few studies. A relatively increasing number of AIS patients were noticed to wear a new kind of elastic orthotic belt for the treatments of scoliosis without doctors' instructions. We postulate the correcting mechanism of this new appliance may cause flattening of the spine. To our knowledge, no study has investigated the effects of this new orthosis on the sagittal profile of AIS patients. The aim of this study was to evaluate and compare the effects of elastic orthotic belt and Milwaukee brace on the sagittal alignment in AIS patients.</p> <p>Methods</p> <p>Twenty-eight female AIS patients with mild or moderate thoracic curves were included in this study. Standing full-length lateral radiographs were obtained in three conditions: natural standing posture without any treatment, with elastic orthotic belt and with Milwaukee brace. Thoracic kyphosis (TK), lumber lordosis (LL) and pelvic incidence (PI) were measured and compared between the above three conditions.</p> <p>Results</p> <p>Both elastic orthotic belt and Milwaukee brace can lead to significant decrease of TK, however, the decrease of TK after wearing elastic orthotic belt is significantly larger than that after wearing Milwaukee brace. Compared with no treatment, LL was found to be significantly smaller after wearing Milwaukee brace, however, such significant decrease was not noted after wearing elastic orthotic belt. No significant changes were observed for the PI between 3 conditions.</p> <p>Conclusions</p> <p>The elastic orthotic belt could lead to more severe thoracic hypokyphosis when compared with Milwaukee brace. This belt may not be a suitable conservative method for the treatment of mild and moderate AIS patients.</p
Treatment of thoraco-lumbar curves in adolescent females affected by idiopathic scoliosis with a progressive action short brace (PASB): assessment of results according to the SRS committee on bracing and nonoperative management standardization criteria
<p>Abstract</p> <p>Background</p> <p>The effectiveness of conservative treatment of scoliosis is controversial. Some studies suggest that brace is effective in stopping curve progression, whilst others did not report such an effect.</p> <p>The purpose of the present study was to effectiveness of Progressive Action Short Brace (PASB) in the correction of thoraco-lumbar curves, in agreement with the Scoliosis Research Society (SRS) Committee on Bracing and Nonoperative Management Standardisation Criteria.</p> <p>Methods</p> <p>Fifty adolescent females (mean age 11.8 ± 0.5 years) with thoraco-lumbar curve and a pre-treatment Risser score ranging from 0 to 2 have been enrolled. The minimum duration of follow-up was 24 months (mean: 55.4 ± 44.5 months). Antero-posterior radiographs were used to estimate the curve magnitude (C<sub>M</sub>) and the torsion of the apical vertebra (T<sub>A</sub>) at 5 time points: beginning of treatment (t<sub>1</sub>), one year after the beginning of treatment (t<sub>2</sub>), intermediate time between t<sub>1 </sub>and t<sub>4 </sub>(t<sub>3</sub>), end of weaning (t<sub>4</sub>), 2-year minimum follow-up from t<sub>4 </sub>(t<sub>5</sub>). Three situations were distinguished: curve correction, curve stabilisation and curve progression.</p> <p>The Kruskal Wallis and Spearman Rank Correlation tests have been used as statistical tests.</p> <p>Results</p> <p>C<sub>M </sub>mean value was 29,30 ± 5,16 SD at t<sub>1 </sub>and 14,67 ± 7,65 SD at t<sub>5</sub>. T<sub>A </sub>was 12.70 ± 6,14 SD at t<sub>1 </sub>and 8,95 ± 5,82 at t<sub>5</sub>. The variation between measures of Cobb and Perdriolle degrees at t<sub>1,2,3,4,5 </sub>and between C<sub>M </sub>t<sub>5</sub>-t<sub>1 </sub>and T<sub>A </sub>t<sub>5</sub>-t<sub>1 </sub>were significantly different.</p> <p>Curve correction was accomplished in 94% of patients, whereas a curve stabilisation was obtained in 6% of patients.</p> <p>Conclusion</p> <p>The PASB, due to its peculiar biomechanical action on vertebral modelling, is highly effective in correcting thoraco-lumbar curves.</p
Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells
The use of non-chemical methods to differentiate stem cells has attracted
researchers from multiple disciplines, including the engineering and the
biomedical fields. No doubt, growth factor based methods are still the most
dominant of achieving some level of proliferation and differentiation control -
however, chemical based methods are still limited by the quality, source, and
amount of the utilized reagents. Well-defined non-chemical methods to
differentiate stem cells allow stem cell scientists to control stem cell biology
by precisely administering the pre-defined parameters, whether they are
structural cues, substrate stiffness, or in the form of current flow. We have
developed a culture system that allows normal stem cell growth and the option of
applying continuous and defined levels of electric current to alter the cell
biology of growing cells. This biphasic current stimulator chip employing ITO
electrodes generates both positive and negative currents in the same culture
chamber without affecting surface chemistry. We found that biphasic electrical
currents (BECs) significantly increased the proliferation of fetal neural stem
cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs
into neuronal cells, as assessed using immunocytochemistry. Our results clearly
show that BECs promote both the proliferation and neuronal differentiation of
fetal NSCs. It may apply to the development of strategies that employ NSCs in
the treatment of various neurodegenerative diseases, such as Alzheimer's
and Parkinson's diseases
Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells
The use of non-chemical methods to differentiate stem cells has attracted
researchers from multiple disciplines, including the engineering and the
biomedical fields. No doubt, growth factor based methods are still the most
dominant of achieving some level of proliferation and differentiation control -
however, chemical based methods are still limited by the quality, source, and
amount of the utilized reagents. Well-defined non-chemical methods to
differentiate stem cells allow stem cell scientists to control stem cell biology
by precisely administering the pre-defined parameters, whether they are
structural cues, substrate stiffness, or in the form of current flow. We have
developed a culture system that allows normal stem cell growth and the option of
applying continuous and defined levels of electric current to alter the cell
biology of growing cells. This biphasic current stimulator chip employing ITO
electrodes generates both positive and negative currents in the same culture
chamber without affecting surface chemistry. We found that biphasic electrical
currents (BECs) significantly increased the proliferation of fetal neural stem
cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs
into neuronal cells, as assessed using immunocytochemistry. Our results clearly
show that BECs promote both the proliferation and neuronal differentiation of
fetal NSCs. It may apply to the development of strategies that employ NSCs in
the treatment of various neurodegenerative diseases, such as Alzheimer's
and Parkinson's diseases
Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression
Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors
Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo
<p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p
SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis
This 2012 Consensus paper reviews the literature on side effects of x-ray exposure in the pediatric population as it relates to scoliosis evaluation and treatment. Alternative methods of spinal assessment and imaging are reviewed, and strategies for reducing the number of radiographs are developed. Using the Delphi technique, SOSORT members developed consensus statements that describe how often radiographs should be taken in each of the pediatric and adolescent sub-populations
- …