250 research outputs found

    Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    Get PDF
    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d(-1) increase in sinking speed for a 5×10(5) µm(3) ml(-1) increase in particle concentration, near independent on ballast type. We finally compare our observations to the literature and stress the need to generate aggregates similar to those in nature in order to get realistic estimates of the impact of ballast particles on sinking speeds

    G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer

    Get PDF
    BACKGROUND: G-protein inwardly rectifying potassium channel 1 (GIRK1) is thought to play a role in cell proliferation in cancer, and GIRK1 gene expression level may define a more aggressive phenotype. We detected GIRK1 expression in tissue specimens from patients with non-small cell lung cancers (NSCLCs) and assessed their clinical characteristics. METHODS: Using reverse transcription-polymerase chain reaction (RT-PCR) analyses, we quantified the expression of GIRK1 in 72 patients with NSCLCs to investigate the relationship between GIRK1 expression and clinicopathologic factors and prognosis. RESULTS: In 72 NSCLC patients, 50 (69%) samples were evaluated as having high GIRK1 gene expression, and 22 (31%) were evaluated as having low GIRK1 gene expression. GIRK1 gene expression was significantly associated with lymph node metastasis, stage (p = 0.0194 for lymph node metastasis; p = 0.0207 for stage). The overall and stage I survival rates for patients with high GIRK1 gene expressed tumors was significantly worse than for those individuals whose tumors had low GIRK1 expression (p = 0.0004 for the overall group; p = 0.0376 for stage I). CONCLUSIONS: These data indicate that GIRK1 may contribute to tumor progression and GIRK1 gene expression can serve as a useful prognostic marker in the overall and stage I NSCLCs

    Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution

    Get PDF
    Background: Sequence mutations represent a driving force of adaptive evolution in bacterial pathogens. It is especially evident in reductive genome evolution where bacteria underwent lifestyles shifting from a free-living to a strictly intracellular or host-depending life. It resulted in loss of function mutations and/or the acquisition of virulence gene clusters. Bacillus anthracis shares a common soil bacterial ancestor with its closely related bacillus species but is the only obligate, causative agent of inhalation anthrax within the genus Bacillus. The anthrax-causing Bacillus anthracis experienced the similar lifestyle changes. We thus hypothesized that the bacterial pathogen would follow a compatible evolution path. Results: In this study, a cluster-based evolution scheme was devised to analyze genes that are gained by or lost from B. anthracis. The study detected gene losses/gains at two separate evolutionary stages. The stage I is when B. anthracis and its sister species within the Bacillus cereus group diverged from other species in genus Bacillus. The stage II is when B. anthracis differentiated from its two closest relatives: B. cereus and B. thuringiensis. Many genes gained at these stages are homologues of known pathogenic factors such those for internalin, B. anthracis-specific toxins and large groups of surface proteins and lipoproteins. Conclusion: The analysis presented here allowed us to portray a progressive evolutionary process during the lifestyle shift of B. anthracis, thus providing new insights into how B. anthracis had evolved and bore a promise of finding drug and vaccine targets for this strategically important pathogen

    Expression analysis of carbohydrate antigens in ductal carcinoma in situ of the breast by lectin histochemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of breast cancer patients diagnosed with ductal carcinoma <it>in situ </it>(DCIS) continues to grow. Laboratory and clinical data indicate that DCIS can progress to invasive disease. Carbohydrate-mediated cell-cell adhesion and tumor-stroma interaction play crucial roles in tumorigenesis and tumor aggressive behavior. Breast carcinogenesis may reflect quantitative as well as qualitative changes in oligosaccharide expression, which may provide a useful tool for early detection of breast cancer. Because tumor-associated carbohydrate antigens (TACA) are implicated in tumor invasion and metastasis, the purpose of this study was to assess the expression of selected TACA by lectin histochemistry on DCIS specimens from the archival breast cancer tissue array bank of the University of Arkansas for Medical Sciences.</p> <p>Methods</p> <p>For detection of TACA expression, specimens were stained with <it>Griffonia simplicifolia </it>lectin-I (GS-I) and <it>Vicia vilosa </it>agglutinin (VVA). We studied associations of lectin reactivity with established prognostic factors, such as tumor size, tumor nuclear grade, and expression of Her-2/neu, p53 mutant and estrogen and progesterone receptors.</p> <p>Results</p> <p>We observed that both lectins showed significant associations with nuclear grade of DCIS. DCIS specimens with nuclear grades II and III showed significantly more intense reactivity than DCIS cases with nuclear grade I to GS-1 (Mean-score chi-square = 17.60, DF = 2; <it>P </it>= 0.0002) and VVA (Mean-score chi-square = 15.72, DF = 2; <it>P </it>= 0.0004).</p> <p>Conclusion</p> <p>The results suggest that the expression of VVA- and GS-I-reactive carbohydrate antigens may contribute to forming higher grade DCIS and increase the recurrence risk.</p

    Polymorphisms in the vascular endothelial growth factor gene and breast cancer in the Cancer Prevention Study II cohort

    Get PDF
    INTRODUCTION: Vascular endothelial growth factor (VEGF) plays a central role in promoting angiogenesis and is over-expressed in breast cancer. At least four polymorphisms in the VEGF gene have been associated with changes in VEGF expression levels: -2578C/A, -1154G/A and -634G/C are all located in the promoter region; and +936C/T is located in the 3'-untranslated region. METHOD: We examined the association between these four VEGF polymorphisms and risk for breast cancer among postmenopausal women in CPS-II (Cancer Prevention Study II) Nutrition Cohort. This cohort was established in 1992 and participants were invited to provide a blood sample between 1998 and 2001. Included in this analysis were 501 postmenopausal women who provided a blood sample and were diagnosed with breast cancer between 1992 and 2001 (cases). Control individuals were 504 cancer-free postmenopausal women matched to the cases with respect to age, race/ethnicity, and date of blood collection (controls). RESULTS: We found no association between any of the polymorphisms examined and overall breast cancer risk. However, associations were markedly different in separate analyses of invasive cancer (n = 380) and in situ cancer (n = 107). The -2578C and -1154G alleles, which are both hypothesized to increase expression of VEGF, were associated with increased risk for invasive breast cancer (odds ratio [OR] 1.46, 95% confidence interval [CI] 1.00–2.14 for -2578 CC versus AA; OR 1.64, 95% CI 1.02–2.64 for -1154 GG versus AA) but they were not associated with risk for in situ cancer. The +936C allele, which is also hypothesized to increase VEGF expression, was not clearly associated with invasive breast cancer (OR 1.21, 95% CI 0.88–1.67 for +936 CC versus TT/CT), but it was associated with reduced risk for in situ cancer (OR 0.59, 95% CI 0.37–0.93 for CC versus TT/CT). The -634 C/G polymorphism was not associated with either invasive or in situ cancer. CONCLUSION: Our findings provide limited support for the hypothesis that the -2578C and -1154G VEGF alleles are associated with increased risk for invasive but not in situ breast cancer in postmenopausal women

    Expression patterns of angiogenic and lymphangiogenic factors in ductal breast carcinoma in situ

    Get PDF
    The objective of this study was to investigate expression of various growth factors associated with angiogenesis and lymphangiogenesis and of their receptors in ductal carcinomas in situ of the breast (DCIS). We studied protein expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF)-A, endothelin (ET)-1, and VEGF-C, and their receptors bFGF-R1, Flt-1, KDR, ETAR, ETBR, and Flt-4 immunohistochemically in 200 DCIS (pure DCIS: n=96; DCIS adjacent to an invasive component: n=104) using self-constructed tissue microarrays. Basic fibroblast growth factor-R1, VEGF-C, Flt-4, and ETAR were expressed in the tumour cells in the majority of cases, whereas bFGF and Flt-1 expression was rarely observed. VEGF-A, KDR, ET-1, and ETBR were variably expressed. The findings of VEGF-C and its receptor Flt-4 as lymphangiogenic factors being expressed in tumour cells of nearly all DCIS lesions and the observed expression of various angiogenic growth factors in most DCIS suggest that in situ carcinomas are capable of inducing angiogenesis and lymphangiogenesis. Moreover, we found a higher angiogenic activity in pure DCIS as compared to DCIS with concomitant invasive carcinoma. This association of angiogenic factors with pure DCIS was considerably more pronounced in the subgroup of non-high-grade DCIS (n=103) as compared with high-grade DCIS (n=94). Determination of these angiogenic markers may therefore facilitate discrimination between biologically different subgroups of DCIS and could help to identify a particularly angiogenic subset with a potentially higher probability of recurrence or of progression to invasiveness. For these DCIS, targeting angiogenesis may represent a feasible therapeutic approach for prevention of progression of DCIS to invasion

    The assessment of angiogenesis and fibroblastic stromagenesis in hyperplastic and pre-invasive breast lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the changes of the neoplastic microenvironment during the different morphological alterations of hyperplastic and pre-invasive breast lesions.</p> <p>Methods</p> <p>78 in situ ductal carcinomas of all degrees of differentiation, 22 atypical ductal hyperplasias, 25 in situ lobular carcinomas, 18 atypical lobular hyperplasias, 32 ductal epithelial hyperplasias of usual type and 8 flat atypias were immunohistochemically investigated for the expression of vascular endothelial growth factor (VEGF), smooth muscle actin (SMA) and CD34, while microvessel density (MVD) was counted using the anti-CD31 antibody.</p> <p>Results</p> <p>VEGF expression was strongly correlated with MVD in all hyperplastic and pre-invasive breast lesions (p < 0.05). Stromagenesis, as characterized by an increase in SMA and a decrease in CD34 positive myofibroblasts was observed mostly around ducts harboring high grade in situ carcinoma and to a lesser extent around moderately differentiated DCIS. In these two groups of in situ carcinomas, a positive correlation between MVD and SMA (p < 0.05) was observed. On the contrary, CD34 was found to be inversely related to MVD (p < 0.05). No statistically significant changes of the stromal fibroblasts were observed in low grade DCIS neither in any of the other lesions under investigation as compared to normal mammary intra- and interlobular stroma.</p> <p>Conclusion</p> <p>Angiogenesis is observed before any significant fibroblastic stromagenesis in pre-invasive breast lesions. A composite phenotype characterized by VEGF positive epithelial cells and SMA positive/CD34 negative stromal cells, is identified mostly in intermediate and high grade DCIS. These findings might imply for new therapeutic strategies using both anti-angiogenic factors and factors selectively targeting tumor stroma in order to prevent the progression of DCIS to invasive carcinoma.</p

    Tumor Cell Plasticity and Angiogenesis in Human Melanomas

    Get PDF
    Recent molecular studies provide evidence for a significant transcriptional plasticity of tumor cell subpopulations that facilitate an active contribution to tumor vasculature. This feature is accompanied by morphological changes both in vitro and in vivo. Herein, we investigated the morphological plasticity of tumor cells with special focus on vasculogenic mimicry and neovascularisation in human melanoma and mouse xenografts of human melanoma cell lines. In melanoma xenograft experiments, different vessel markers and green fluorescent protein expression were used to show how melanoma cells contribute to neovascularization. Additionally, we analyzed neovascularization in 49 primary melanomas and 175 melanoma metastases using immunostaining for blood (CD34) and lymphatic (D2–40) vessel-specific markers. We found significantly more lymphatic vessels in primary melanomas than in melanoma metastases (p<0.0001). In contrast to the near absence of lymphatic vessels within metastases, we found extensive blood micro-neovascularization. Blood micro-neovascularization was absent in micro metastases (less than 2 mm). A significant inverse correlation between Glut-1 expression (implying local hypoxia) and the presence of microvessels indicates their functional activity as blood vessels (p<0.0001). We suggest that the hypoxic microenvironment in metastases contributes to a phenotype switch allowing melanoma cells to physically contribute to blood vessel formation

    Expression of the VEGF and angiopoietin genes in endometrial atypical hyperplasia and endometrial cancer

    Get PDF
    Angiogenesis is critical for the growth and metastasis of endometrial cancer and is therefore an important therapeutic target. Vascular endothelial growth factor-A (VEGF-A) is a key molecule in angiogenesis, but the identification of related molecules and the angiopoietins suggests a more complex picture. We investigated the presence of transcripts for VEGF-A, VEGF-B, VEGF-C, VEGF-D, Angiopoietin-1 and Angiopoietin-2 in benign endometrium, atypical complex hyperplasia (ACH) and endometrioid endometrial carcinoma using in situ hybridisation. We confirmed the presence of VEGF-A mRNA in the epithelial cells of cancers examined (13 out of 13), but not in benign endometrium or ACH. We also demonstrate, using quantitative polymerase chain reaction, that levels of VEGF-B mRNA are significantly lower in endometrial cancer than benign endometrium. We conclude that loss of VEGF-B may contribute to the development of endometrial carcinoma by modulating availability of receptors for VEGF-A
    corecore