23 research outputs found

    A Method for Determining Skeletal Lengths from DXA Images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal ratios and bone lengths are widely used in anthropology and forensic pathology and hip axis length is a useful predictor of fracture. The aim of this study was to show that skeletal ratios, such as length of femur to height, could be accurately measured from a DXA (dual energy X-ray absorptiometry) image.</p> <p>Methods</p> <p>90 normal Caucasian females, 18–80 years old, with whole body DXA data were used as subjects. Two methods, linear pixel count (LPC) and reticule and ruler (RET) were used to measure skeletal sizes on DXA images and compared with real clinical measures from 20 subjects and 20 x-rays of the femur and tibia taken in 2003.</p> <p>Results</p> <p>Although both methods were highly correlated, the LPC inter- and intra-observer error was lower at 1.6% compared to that of RET at 2.3%. Both methods correlated positively with real clinical measures, with LPC having a marginally stronger correlation coefficient (r<sup>2 </sup>= 0.94; r<sup>2 </sup>= 0.84; average r<sup>2 </sup>= 0.89) than RET (r<sup>2 </sup>= 0.86; r<sup>2 </sup>= 0.84; average r<sup>2 </sup>= 0.85) with X-rays and real measures respectively. Also, the time taken to use LPC was half that of RET at 5 minutes per scan.</p> <p>Conclusion</p> <p>Skeletal ratios can be accurately and precisely measured from DXA total body scan images. The LPC method is easy to use and relatively rapid. This new phenotype will be useful for osteoporosis research for individuals or large-scale epidemiological or genetic studies.</p

    Upper limb rehabilitation using robotic exoskeleton systems: a systematic review

    Get PDF
    Exoskeleton assisted therapy has been reported as a significant reduction in impairment and gain in functional abilities of stroke patients. In this paper, we conduct a systematic review on the upper limb rehabilitation using robotic exoskeleton systems. This review is based on typical mechanical structures and control strategies for exoskeletons in clinical rehabilitation conditions. A variety of upper limb exoskeletons are classified and reviewed according to their rehabilitation joints. Special attentions are paid to the performance control strategies and mechanism designs in clinical trials and to promote the adaptability to different patients and conditions. Finally, we analyze and highlight the current research gaps and the future directions in this field. We intend to offer informative resources and reliable guidance for relevant researcher’s further studies, and exert a far-reaching influence on the development of advanced upper limb exoskeleton robotic systems

    Measures of frailty in population-based studies: An overview

    Get PDF
    Although research productivity in the field of frailty has risen exponentially in recent years, there remains a lack of consensus regarding the measurement of this syndrome. This overview offers three services: first, we provide a comprehensive catalogue of current frailty measures; second, we evaluate their reliability and validity; third, we report on their popularity of use

    A narrative review on haptic devices: relating the physiology and psychophysical properties of the hand to devices for rehabilitation in central nervous system disorders

    No full text
    Purpose. This paper provides rehabilitation professionals and engineers with a theoretical and pragmatic rationale for the inclusion of haptic feedback in the rehabilitation of central nervous system disorders affecting the hand.Method. A narrative review of haptic devices used in sensorimotor hand rehabilitation was undertaken. Presented papers were selected to outline and clarify the underlying somatosensory mechanisms underpinning these technologies and provide exemplars of the evidence to date.Results. Haptic devices provide kinaesthetic and/or tactile stimulation. Kinaesthetic haptics are beginning to be incorporated in central nervous system rehabilitation, however, there has been limited development of tactile haptics. Clinical research in haptic rehabilitation of the hand is embryonic but initial findings indicate potential clinical benefit. Conclusions. Haptic rehabilitation offers the potential to advance sensorimotor hand rehabilitation but both scientific and pragmatic developments are needed to ensure that its potential is realised.<br/
    corecore