318 research outputs found

    Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    Get PDF
    ‘Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for ‘threatened species' to consider ‘threatened taxa’ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites

    Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    Get PDF
    Extent: 9p.BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (~70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.Craig Costion, Andrew Ford, Hugh Cross, Darren Crayn, Mark Harrington and Andrew Low

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Query Large Scale Microarray Compendium Datasets Using a Model-Based Bayesian Approach with Variable Selection

    Get PDF
    In microarray gene expression data analysis, it is often of interest to identify genes that share similar expression profiles with a particular gene such as a key regulatory protein. Multiple studies have been conducted using various correlation measures to identify co-expressed genes. While working well for small datasets, the heterogeneity introduced from increased sample size inevitably reduces the sensitivity and specificity of these approaches. This is because most co-expression relationships do not extend to all experimental conditions. With the rapid increase in the size of microarray datasets, identifying functionally related genes from large and diverse microarray gene expression datasets is a key challenge. We develop a model-based gene expression query algorithm built under the Bayesian model selection framework. It is capable of detecting co-expression profiles under a subset of samples/experimental conditions. In addition, it allows linearly transformed expression patterns to be recognized and is robust against sporadic outliers in the data. Both features are critically important for increasing the power of identifying co-expressed genes in large scale gene expression datasets. Our simulation studies suggest that this method outperforms existing correlation coefficients or mutual information-based query tools. When we apply this new method to the Escherichia coli microarray compendium data, it identifies a majority of known regulons as well as novel potential target genes of numerous key transcription factors

    Origin of Co-Expression Patterns in E.coli and S.cerevisiae Emerging from Reverse Engineering Algorithms

    Get PDF
    BACKGROUND: The concept of reverse engineering a gene network, i.e., of inferring a genome-wide graph of putative gene-gene interactions from compendia of high throughput microarray data has been extensively used in the last few years to deduce/integrate/validate various types of "physical" networks of interactions among genes or gene products. RESULTS: This paper gives a comprehensive overview of which of these networks emerge significantly when reverse engineering large collections of gene expression data for two model organisms, E. coli and S. cerevisiae, without any prior information. For the first organism the pattern of co-expression is shown to reflect in fine detail both the operonal structure of the DNA and the regulatory effects exerted by the gene products when co-participating in a protein complex. For the second organism we find that direct transcriptional control (e.g., transcription factor-binding site interactions) has little statistical significance in comparison to the other regulatory mechanisms (such as co-sharing a protein complex, co-localization on a metabolic pathway or compartment), which are however resolved at a lower level of detail than in E. coli. CONCLUSION: The gene co-expression patterns deduced from compendia of profiling experiments tend to unveil functional categories that are mainly associated to stable bindings rather than transient interactions. The inference power of this systematic analysis is substantially reduced when passing from E. coli to S. cerevisiae. This extensive analysis provides a way to describe the different complexity between the two organisms and discusses the critical limitations affecting this type of methodologies

    Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although <it>Escherichia coli </it>is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference.</p> <p>Results</p> <p>We used a three-step approach in which we combined gene regulatory network inference based on directed information (DTI) and sequence analysis. DTI values were calculated on a set of gene expression profiles from 19 time course experiments extracted from the Many Microbes Microarray Database. Focusing on influences between pairs of genes in which one partner encodes a transcription factor (TF) we derived a network which contains 878 TF - gene interactions of which 166 are known according to RegulonDB. Afterward, we selected a subset of 109 interactions that could be confirmed by the presence of a phylogenetically conserved binding site of the respective regulator. By this second step, the fraction of known interactions increased from 19% to 60%. In the last step, we checked the 44 of the 109 interactions not yet included in RegulonDB for functional relationships between the regulator and the target and, thus, obtained ten TF - target gene interactions. Five of them concern the regulator LexA and have already been reported in the literature. The remaining five influences describe regulations by Fis (with two novel targets), PhdR, PhoP, and KdgR. For the validation of our approach, one of them, the regulation of lipoate synthase (LipA) by the pyruvate-sensing pyruvate dehydrogenate repressor (PdhR), was experimentally checked and confirmed.</p> <p>Conclusions</p> <p>We predicted a set of five novel TF - target gene interactions in <it>E. coli</it>. One of them, the regulation of <it>lipA </it>by the transcriptional regulator PdhR was validated experimentally. Furthermore, we developed DTInfer, a new R-package for the inference of gene-regulatory networks from microarrays using directed information.</p

    Performance and Consistency of Indicator Groups in Two Biodiversity Hotspots

    Get PDF
    In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection.We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency.We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species

    Relation between body mass index and depression: a structural equation modeling approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity and depression are two major diseases which are associated with many other health problems such as hypertension, dyslipidemia, diabetes mellitus, coronary heart disease, stroke, myocardial infarction, heart failure in patients with systolic hypertension, low bone mineral density and increased mortality. Both diseases share common health complications but there are inconsistent findings concerning the relationship between obesity and depression. In this work we used the <it>structural equation modeling </it>(SEM) technique to examine the relation between body mass index (BMI), as a proxy for obesity, and depression using the Canadian Community Health Survey, Cycle 1.2.</p> <p>Methods</p> <p>In this SEM model we postulate that 1) BMI and depression are directly related, 2) BMI is directly affected by the physical activity and, 3)depression is directly influenced by stress. SEM was also used to assess the relation between BMI and depression separately for males and females.</p> <p>Results</p> <p>The results indicate that higher BMI is associated with more severe form of depression. On the other hand, the more severe form of depression may result in less weight gain. However, the association between depression and BMI is gender dependent. In males, the higher BMI may result in a more severe form of depression while in females the relation may not be the same. Also, there was a negative relationship between physical activity and BMI.</p> <p>Conclusion</p> <p>In general, use of SEM method showed that the two major diseases, obesity and depression, are associated but the form of the relation is different among males and females. More research is necessary to further understand the complexity of the relationship between obesity and depression. It also demonstrated that SEM is a feasible technique for modeling the relation between obesity and depression.</p

    Depression and body mass index, a u-shaped association

    Get PDF
    Background Results of studies concerning the association between obesity and depression are conflicting. Some find a positive association, some a negative association and some find no association at all. Most studies, however, examine a linear association between Body Mass Index (BMI) and depression. The present study investigates if a nonlinear (U-shaped) trend is preferable over a linear trend to describe the relationship between BMI and depression, which means that both underweight and obesity are associated with depression. Methods We investigated the existence of such a U-curve in a sample of 43,534 individuals, aged between 18–90 years, who participated in a cross-sectional study (Continuous Survey of Living Conditions) of physical and mental health in the general population of the Netherlands. We calculated linear and nonlinear (quadratic) ANOVA with polynomial contrast and curve fit regression statistics to investigate whether there was a U-shaped trend in the association between BMI and depression. Results We find a very significant U-shaped association between BMI categories (underweight, normal, overweight and obesity) and depression (p ≤ 0.001). There is a trend indicating a significant difference in the association between males and females (p = 0.05). We find a very significant U-shaped (quadratic) association between BMI (BMI2) and depression (p ≤ 0.001), continuous BMI is not linearly associated with depression (p = 0.514). Conclusion The results of this study give evidence for a significant U-shaped trend in the association between BMI and depression
    • …
    corecore