1,266 research outputs found

    Beyond "The limits to peat bog growth'': Cross-scale feedback in peatland development

    Get PDF
    Copyright by the Ecological Society of America 2006, for personal or educational use only. Article is available at <http://dx.doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2

    Microform-scale variations in peatland permeability and their ecohydrological implications

    Get PDF
    1. The acrotelm-catotelm model of peatland hydrological and biogeochemical processes posits that the permeability of raised bogs is largely homogenous laterally but varies strongly with depth through the soil profile; uppermost peat layers are highly permeable while deeper layers are, effectively, impermeable. 2. We measured down-core changes in peat permeability, plant macrofossil assemblages, dry bulk density and degree of humification beneath two types of characteristic peatland microform – ridges and hollows – at a raised bog in Wales. Six 1424 C dates were also collected for one hollow and an adjacent ridge. 3. Contrary to the acrotelm-catotelm model, we found that deeper peat can be as highly permeable as near-surface peat and that its permeability can vary by more than an order of magnitude between microforms over horizontal distances of 1-5 metres. 4. Our palaeo-ecological data paint a complicated picture of microform persistence. Some microforms can remain in the same position on a bog for millennia, growing vertically upwards as the bog grows. However, adjacent areas on the bog (< 10 m distant) show switches between microform type over time, indicating a lack of persistence. 5. Synthesis. We suggest that the acrotelm-catotelm model should be used cautiously; spatial variations in peatland permeability do not fit the simple patterns suggested by the model. To understand how peatlands as a whole function both hydrologically and ecologically it is necessary to understand how patterns of peat physical properties and peatland vegetation develop and persist

    EnRoot: a narrow, inexpensive and partially 3D-printable minirhizotron for imaging fine root production

    Get PDF
    Background Fine root production is one of the least well understood components of the carbon cycle in terrestrial ecosystems. Minirhizotrons allow accurate and non-destructive sampling of fine root production. Small and large scale studies across a range of ecosystems are needed to have baseline data on fine root production and further assess the impact of global change upon it; however, the expense and the low adaptability of minirhizotrons prevent such data collection, in worldwide distributed sampling schemes, in low-income countries and in some ecosystems (e.g. tropical forested wetlands). Results We present EnRoot, a narrow minirhizotron of 25 mm diameter, that is partially 3D printable. EnRoot is inexpensive (€150), easy to construct (no prior knowledge required) and adapted to a range of ecosystems including tropical forested wetlands (e.g. mangroves, peatlands). We tested EnRoot’s accuracy and precision for measuring fine root length and diameter, and it yielded Lin’s concordance correlation coefficient values of 0.95 for root diameter and 0.92 for length. As a proof of concept, we tested EnRoot in a mesocosm study, and in the field in a tropical mangrove. EnRoot proved its capacity to capture the development of roots of a legume (Medicago sativa) and a mangrove species (seedlings of Rhizophora mangle) in laboratory mesocosms. EnRoot’s field installation was possible in the root-dense tropical mangrove because its narrow diameter allowed it to be installed between larger roots and because it is fully waterproof. EnRoot compares favourably with commercial minirhizotrons, and can image roots as small as 56 ”m. Conclusion EnRoot removes barriers to the extensive use of minirhizotrons by being low-cost, easy to construct and adapted to a wide range of ecosystem. It opens the doors to worldwide distributed minirhizotron studies across an extended range of ecosystems with the potential to fill knowledge gaps surrounding fine root production

    Using 'snapshot' measurements of CH4 fluxes from an ombrotrophic peatland to estimate annual budgets: interpolation versus modelling

    Get PDF
    Flux-chamber measurements of greenhouse gas exchanges between the soil and the atmosphere represent a snapshot of the conditions on a particular site and need to be combined or used in some way to provide integrated fluxes for the longer time periods that are often of interest. In contrast to carbon dioxide (CO₂), most studies that have estimated the time-integrated flux of CH₄ on ombrotrophic peatlands have not used models. Typically, linear interpolation is used to estimate CH₄ fluxes during the time periods between flux-chamber measurements. CH₄ fluxes generally show a rise followed by a fall through the growing season that may be captured reasonably well by interpolation, provided there are sufficiently frequent measurements. However, day-to-day and week-to-week variability is also often evident in CH₄ flux data, and will not necessarily be properly represented by interpolation. Using flux chamber data from a UK blanket peatland, we compared annualised CH₄ fluxes estimated by interpolation with those estimated using linear models and found that the former tended to be higher than the latter. We consider the implications of these results for the calculation of the radiative forcing effect of ombrotrophic peatlands

    Modelling time-integrated fluxes of CO2 and CH4 in peatlands: A review

    Get PDF
    There is widespread interest in estimating annual carbon dioxide (CO2) and methane (CH4) budgets for peatlands using data collected from flux chambers. Flux-chamber measurements are a snapshot of the conditions on a particular site and may not adequately represent fluxes between measurements. However, these measurements can be used in simple models to estimate time-integrated fluxes of CO2 and CH4. This paper reviews modelling approaches used for estimating such time-integrated fluxes and provides what we hope is a ‘one-stop-shop’ for new researchers, such as PhD students, considering using such models. The review is written for those with a non-mathematical background

    Controls on Near‐Surface Hydraulic Conductivity in a Raised Bog

    Get PDF
    Shallow water tables protect northern peatlands and their important carbon stocks from aerobic decomposition. Hydraulic conductivity, K, is a key control on water tables. The controls on K, particularly in degraded and restored peatlands, remain a subject of ongoing research. We took 29 shallow (~50 cm) peat cores from an estuarine raised bog in Wales, UK. Parts of the bog are in close‐to‐natural condition, while other areas have undergone shallow peat cutting for fuel and drainage, followed by restoration through ditch blocking. In the laboratory we measured horizontal (Kh) and vertical (Kv) hydraulic conductivity. We fitted linear multiple regression models to describe log10‐transformed Kh and Kv on the basis of simple, easy‐to‐measure predictors. Dry bulk density and degree of decomposition were the strongest predictors of Kh and Kv. Perhaps surprisingly, the independent effect of hummocks was to produce higher‐Kv peat than in lawns; while the independent effect of restored diggings was to produce higher‐K peat than in uncut locations. Our models offer high explanatory power for Kh (adjusted r2 = 0.740) and Kv (adjusted r2 = 0.787). Our findings indicate that generalizable predictive models of peat K, similar to pedotransfer functions for mineral soils, may be attainable. Kh and Kv possess subtly different controls that are consistent with the contrasting roles of these two properties in peatland water budgets. Our near‐surface samples show no evidence for the low‐K marginal peat previously observed in deeper layers at the same site, indicating that such structures may be less important than previously believed

    A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: DigiBog model outputs are available from Dylan M. Young on reasonable request.The carbon (C) accumulation histories of peatlands are of great interest to scientists, land users and policy makers. Because peatlands contain more than 500 billion tonnes of C, an understanding of the fate of this dynamic store, when subjected to the pressures of land use or climate change, is an important part of climate-change mitigation strategies. Information from peat cores is often used to recreate a peatland’s C accumulation history from recent decades to past millennia, so that comparisons between past and current rates can be made. However, these present day observations of peatlands’ past C accumulation rates (known as the apparent rate of C accumulation - aCAR) are usually different from the actual uptake or loss of C that occurred at the time (the true C balance). Here we use a simple peatland model and a more detailed ecosystem model to illustrate why aCAR should not be used to compare past and current C accumulation rates. Instead, we propose that data from peat cores are used with existing or new C balance models to produce reliable estimates of how peatland C function has changed over time.Natural Environment Research Council (NERC

    Misinterpreting carbon accumulation rates in records from near-surface peat

    Get PDF
    Peatlands are globally important stores of carbon (C) that contain a record of how their rates of C accumulation have changed over time. Recently, near-surface peat has been used to assess the effect of current land use practices on C accumulation rates in peatlands. However, the notion that accumulation rates in recently formed peat can be compared to those from older, deeper, peat is mistaken – continued decomposition means that the majority of newly added material will not become part of the long-term C store. Palaeoecologists have known for some time that high apparent C accumulation rates in recently formed peat are an artefact and take steps to account for it. Here we show, using a model, how the artefact arises. We also demonstrate that increased C accumulation rates in near-surface peat cannot be used to infer that a peatland as a whole is accumulating more C – in fact the reverse can be true because deep peat can be modified by events hundreds of years after it was formed. Our findings highlight that care is needed when evaluating recent C addition to peatlands especially because these interpretations could be wrongly used to inform land use policy and decisions

    The Importance of CH₄ Ebullition in Floodplain Fens

    Get PDF
    Uncertainty in estimates of CH4 emissions from peatlands arise, in part, due to difficulties in quantifying the importance of ebullition. This is a particular concern in temperate lowland floodplain fens in which total CH4 emissions to the atmosphere (often measured as the sum of diffusive and plant‐mediated fluxes) are known to be high, but few direct measurements of CH4 ebullition fluxes have been made. Our study quantified CH4 fluxes (diffusion, plant‐mediated, and ebullition) from two temperate floodplain fens under conservation management (Norfolk, UK) over 176 days using funnels and static chambers. CH4 ebullition was a major component (>38%) of total CH4 emissions over spring and summer. Seasonal variations in quantifiable CH4 ebullition fluxes were marked, covering six orders of magnitude (5 × 10−5 to 62 mg·CH4·m−2·hr−1). This seasonal variability in CH4 ebullition fluxes arose from changes in both bubble volume flux and bubble CH4 concentration, highlighting the importance of regular measurements of the latter for accurate assessment of CH4 ebullition using funnels. Soil temperature was the primary control on CH4 ebullition fluxes. Elevated water level was also associated with increased CH4 ebullition fluxes, with a distinct increase in CH4 ebullition flux when water level rose to within 10 cm of the peat surface. In contrast, CH4 ebullition flux decreased steadily with increasing plant cover (measured as vascular green area). Ebullition was both steady and episodic in nature, and drops in air pressure during the two‐day funnel deployments were associated with higher fluxes

    Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach

    Get PDF
    AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes
    • 

    corecore