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Abstract 22 

Uncertainty in estimates of CH4 emissions from peatlands arise, in part, due to difficulties in 23 

quantifying the importance of ebullition. This is a particular concern in temperate lowland 24 

floodplain fens in which total CH4 emissions to the atmosphere (often measured as the sum of 25 

diffusive and plant-mediated fluxes) are known to be high, but few direct measurements of 26 

CH4 ebullition fluxes have been made. Our study quantified CH4 fluxes (diffusion, plant-27 

mediated and ebullition) from two temperate floodplain fens under conservation management 28 

(Norfolk, UK) over 176 days using funnels and static chambers. CH4 ebullition was a major 29 

component (> 38 %) of total CH4 emissions over spring and summer. Seasonal variations in 30 

quantifiable CH4 ebullition fluxes were marked, covering six orders of magnitude (5  10
-5

 to 31 

62 mg CH4 m
-2

 h
-1

). This seasonal variability in CH4 ebullition fluxes arose from changes in 32 

both bubble volume flux and bubble CH4 concentration, highlighting the importance of 33 

regular measurements of the latter for accurate assessment of CH4 ebullition using funnels. 34 

Soil temperature was the primary control on CH4 ebullition fluxes. Elevated water level was 35 

also associated with increased CH4 ebullition fluxes, with a distinct increase in CH4 ebullition 36 

flux when water level rose to within 10 cm of the peat surface. In contrast, CH4 ebullition 37 

flux decreased steadily with increasing plant cover (measured as Vascular Green Area). 38 

Ebullition was both steady and episodic in nature; and drops in air pressure during the two-39 

day funnel deployments were associated with higher fluxes.  40 

  41 

1 Introduction 42 

The contemporary global warming or cooling effect of peatlands is influenced 43 

disproportionately by emissions of the potent but short-lived greenhouse gas, CH4 (Frolking 44 

& Roulet, 2007), leading to concern about the potential for peatland management to 45 

unintentionally increase CH4 emissions and exacerbate radiative forcing (Abdalla et al., 2016; 46 

Petrescu et al., 2015). Estimates of peatland CH4 emissions are uncertain (Limpens et al., 47 

2008), in part because of difficulties in quantifying reliably the contribution from one of the 48 

main CH4 transport mechanisms, ebullition or bubbling (Baird et al., 2009; Ramirez et al., 49 

2017; Yu et al., 2014). Ebullition may be steady or episodic (Goodrich et al., 2011). Green 50 

and Baird (2012) define the former as a steady stream of CH4-containing bubbles released to 51 

the water table, and note that it is analogous to the steady release of bubbles (albeit ones 52 

containing CO2) seen in vats of fermenting beer. Green and Baird (2012) also note that 53 

bubbles may be released in short-lived (minutes to hours) bursts, with fluxes during these 54 

bursts being much higher and more variable than background steady fluxes. They term such 55 
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bursts episodic ebullition. The amount of CH4 transported to the water table via ebullition 56 

depends on both bubble volume flux and CH4 concentration (Coulthard et al., 2009). 57 

Measurements using funnel traps show high spatiotemporal heterogeneity in bubble volume 58 

flux (Baird et al., 2004; Green & Baird, 2012, 2013; Stamp et al., 2013). Upscaling (Bon et 59 

al., 2014; Coulthard et al., 2009) and managing (Abdalla et al., 2016; Petrescu et al., 2015) 60 

CH4 effluxes will require greater understanding of the spatial and temporal factors controlling 61 

both components of ebullition: bubble volume flux and CH4 concentration.  62 

 63 

Temperature, water level, and microbial substrate availability are widely-recognized as the 64 

key controls on ecosystem-scale CH4 emissions (e.g., Bubier et al., 1993; Christensen et al., 65 

2003). Ebullition depends on these factors, as well as on sub-surface peat properties that 66 

affect the growth, storage and release of gas bubbles (Yu et al., 2014). High rates of ebullition 67 

(> ~10 mg CH4 m
-2

 hr
-1

) can be triggered by episodic events such as gusts of wind, drops in 68 

hydrostatic pressure or changes in barometric pressure (Coulthard et al., 2009; Kellner et al., 69 

2006; Strack et al., 2005, Goodrich et al., 2011), but rapid CH4 transport can also occur 70 

through plants (Shannon et al., 1996; Noyce et al., 2014). Besides providing a direct, 71 

competing mechanism for rapid transport of CH4, emergent macrophytes affect CH4 72 

ebullition indirectly (Chanton, 2005; Laanbroek, 2010) by (i) producing labile carbon, which 73 

becomes substrate for methanogens and (ii) supplying oxygen to the rhizosphere, which fuels 74 

CH4 oxidation as well as the recycling of alternative terminal electron acceptors involved in 75 

competing redox processes.  76 

 77 

Although the contribution of ebullition to total CH4 emission from bogs has been quantified 78 

in a few studies (Baird et al., 2004; Chen & Slater, 2015; Stamp et al., 2013), the importance 79 

of ebullition as a component of CH4 emissions from floodplain fens has not yet been 80 

characterized. Total CH4 effluxes from temperate floodplain fens are reported as an order of 81 

magnitude greater than from ombrotrophic bogs (Audet et al., 2013; Hendriks et al., 2007), 82 

even though the fen measurements omitted ebullition fluxes. The dominance of emergent 83 

macrophytes, as well as persistently high water levels, may help explain why CH4 emissions 84 

are particularly high from groundwater-fed peatlands, or fens (Turetsky et al., 2014). A recent 85 

analysis highlighted the potentially large - but highly uncertain - extent of peat-forming 86 

riparian wetlands, including floodplain fens dominated by emergent macrophytes (Gumbricht 87 

et al., 2017). Ebullition fluxes from these systems are likely to be strongly influenced by 88 

management of vegetation and water levels (Abdalla et al., 2016). Furthermore, given the 89 

similarities in vegetation type between temperate and tropical floodplain fens, and with 90 
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Phragmites australis (Cav.) Trin. ex Steud. being the most abundant wetland species globally 91 

(van den Berg et al., 2016), findings from research carried out on reed-dominated temperate 92 

floodplain fen sites may also be applicable to other regions. 93 

 94 

Our research aimed to quantify CH4 fluxes at two temperate floodplain fen sites under 95 

conservation management, using a combination of static chambers and funnel traps to 96 

establish the importance of ebullition as a CH4 transport pathway. Specific research questions 97 

were as follows: 98 

 99 

RQ1. How variable are CH4 ebullition fluxes over the growing season and across reed-100 

dominated sites of contrasting productivity?  101 

 102 

RQ2. Which environmental factors control CH4 ebullition flux and its components (CH4 103 

concentration, bubble volume flux)? 104 

 105 

RQ3. What is the overall importance of CH4 ebullition flux as a proportion of total CH4 flux 106 

to the atmosphere over the growing season at the two sites? 107 

2 Study sites 108 

The study took place at two lowland floodplain fens: Sutton (1°30′E 52°45′N) and 109 

Strumpshaw Fen (1°27′E 52°36′N), in the Norfolk Broads, UK (Figure 1) from 13th March to 110 

5th September 2013. Fens cover the largest area of any lowland peatland type in England and 111 

Wales (Natural England, 2010) and are widely distributed throughout northern temperate 112 

zones (Cadillo-Quiroz et al., 2008; Turetsky et al., 2014). In the UK it is estimated that fen, 113 

reedbed, lowland raised bog and grazing marsh together cover at least 392,000 ha, of which 114 

fen covers 140,000 ha (Maltby et al., 2011; Baird et al., 2009), but the exact extent of 115 

floodplain fen is uncertain. Both sites are dominated by P. australis (Table 1) which is 116 

globally widespread and abundant, occurring in many wetland habitats (IUCN, 2017). In the 117 

UK, fens are valued for their high biodiversity (UK Biodiversity Action Plan, 2008), and as 118 

locations of significant carbon storage (Baird et al., 2009). Although the two sites are reed-119 

dominated, they have contrasting nutrient status. The relatively high nutrient (N and P) 120 

content of both peat and vegetation at Strumpshaw in relation to Sutton Fen (Table 1) enabled 121 

characterization of CH4 fluxes across the range of nutrient status found in floodplain fens in 122 

agricultural landscapes in Europe, based on foliar (Boorman & Fuller, 1981; Olde Venterink 123 

et al., 2001) and soil nutrient contents (Syed et al., 2006; Wassen & Olde Venterink, 2006) 124 

reported in the literature. Hereafter, we refer to Strumpshaw Fen as NB-HN (Norfolk Broads-125 
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High Nutrient) and Sutton Fen as NB-LN (Norfolk Broads-Low Nutrient). The codes here are 126 

also used by the Defra-funded Project SP1210 ‘Lowland Peatland Systems in England and 127 

Wales’ of which these sites were a component. The two sites are both deep peat fens under 128 

conservation management which aims to maintain floral diversity to benefit invertebrate and 129 

bird habitat. Vegetation is cut on a rotation to prevent succession into fen carr and to reduce 130 

dominance by tall plant species. Reeds at both sites had previously been cut four years prior 131 

to the study.  Water levels at NB-HN are controlled by embankments between the fen and its 132 

adjacent river, whilst at NB-LN there are no embankments next to the river.  A network of 133 

sluices and ditches are used at both sites to control the flow of water around the fens, and to 134 

ensure high water tables throughout most of the year.  135 

 136 

3 Methods 137 

3.1 Overall approach and environmental variables 138 

CH4 fluxes were measured from 13 March 2013 (Day of Year 72)  to 5 September 2013 (Day 139 

of Year 248) using six static chambers and 12 inverted glass funnels at each site (described in 140 

Sections 3.2 and 3.3; Figure S1). The chamber measurements captured CH4 fluxes by 141 

diffusion, plant-mediated transport and steady ebullition. The funnel measurements captured 142 

CH4 fluxes by steady and episodic ebullition. Thus, in this study, steady ebullition fluxes 143 

were measured by both chambers and funnels, and the implications of this for interpretation 144 

of the importance of ebullition as a contributor to total CH4 fluxes are discussed in Sections 145 

3.5 and 5.3. 146 

 147 

Measurements were taken within a 0.04 km
2
 area at each site where the vegetation had been 148 

harvested in 2009, ensuring that P. australis was at a comparable stage of growth in both 149 

sites. An automatic weather station (MiniMet, Skye Instruments, UK) at each site provided 150 

hourly averages of air temperature, soil temperature at 5
 
cm depth, net radiation, air pressure, 151 

wind speed and direction, and hourly rainfall totals. Water level was measured hourly using 152 

pressure transducers in dipwells at six locations adjacent to chamber collars (Levelogger 153 

Gold, Solinst, Canada). Seasonal variability in plant biomass within chamber collars was 154 

monitored non-destructively following each measurement of CH4 flux using an allometric 155 

technique that quantifies vascular green area (VGA; Wilson et al., 2007). Peat stratigraphy of 156 

15  3 m cores collected systematically from each site was described using the von Post 157 

measure of humification and a simplified Troels-Smith system for peat composition (Shotyk, 158 

1988; Troels-Smith, 1955). A detailed description of the vegetation at each site can be found 159 
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in Table S1, and a description of the depth-distribution of peat composition at each site is 160 

provided in Table S2. 161 

3.2 Steady and episodic CH4 ebullition fluxes measured using funnels 162 

Time-integrated measurements of combined steady and episodic CH4 ebullition flux were 163 

taken using the inverted funnel method outlined in Stamp et al. (2013). Glass funnels had a 164 

diameter of 0.2 m and 3 mm thick walls to eliminate gas permeation losses (Figure S2a). The 165 

funnel spouts were replaced by 0.1 m cylindrical glass tubing, with an internal diameter of 166 

0.036 m and 3 mm thick walls. A rubber bung was used at the top of the cylinder to form a 167 

seal, and each bung was drilled and fitted with a syringe sampling tube (Tygon, 3.2 mm 168 

internal diameter) terminating in a three-way valve. The funnels were wrapped in a silvered 169 

cover to minimize solar heating, except for a north-facing strip of glass fitted with a 170 

graduated scale to enable reading of the water level in the funnel. The inverted funnels were 171 

inserted into shallow pits cut into the peat surface to a depth of 0.4 m to ensure the base of the 172 

funnel was permanently below the water table and left in situ for the entire field campaign 173 

(Figure S2b). Funnels were tall enough that when located in the shallow pit, the top 174 

cylindrical portion of the funnel was above the peat surface and the graduated scale could be 175 

read from a short distance. When in position, each funnel was filled with water, which was 176 

displaced by rising bubbles. A volumetric rate of ebullition, here termed bubble volume flux, 177 

was estimated by reading the level of the gas-water interface in the funnel. The concentration 178 

of CH4 within the trapped bubbles was quantified by extracting the trapped bubble headspace 179 

for measurement. The removal of the trapped bubbles also allowed the funnel to be re-set for 180 

the next measurement period. 181 

 182 

CH4 ebullition flux was quantified using 12 funnels at each site; however, one funnel broke at 183 

NB-HN in March 2013, leaving 11 at that site. A total of 132 measurements were made over 184 

the field campaign. Each month, all funnels were visited and sampled over a two-day period. 185 

Each funnel was filled with water on day one and the bubble volume was recorded 48 hours 186 

later, and bubble gas samples were taken for analysis. Funnels were sampled between 09:00 187 

and 17:00 GMT (local time) by firstly recording the bubble volume to ± 2 mm from a 188 

distance of 2 m using binoculars to prevent observer-induced ebullition. A 15 mL gas sample 189 

was then extracted using a syringe and injected into a 12 mL pre-evacuated exetainer (Labco 190 

Limited, Ceredigion, Wales). For gas samples < 15 mL, the gas headspace from the funnel 191 

along with the required amount of water to make up 15 mL of sample was taken. The Bunsen 192 

coefficient was used to account for CH4 in the aqueous phase (Yamamoto et al., 1976). 193 
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Atmospheric temperature and pressure were also noted at the time of sampling using a 194 

thermo-hygro-barometer (Commeter C4141, Czech Republic). The gas samples were 195 

analyzed for CH4 content using a gas chromatograph coupled with a flame ionization detector 196 

as outlined in Baird et al. (2010). Hourly steady fluxes and averaged rates of ebullition from 197 

the funnels were calculated following the method described in Stamp et al. (2013).  198 

3.3 Diffusive, plant mediated and steady ebullition fluxes of CH4 measured by static chamber  199 

Steady fluxes, a combination of diffusive, plant-mediated and steady ebullition, were 200 

measured using a transparent, segmented, 1.5-m tall, static chamber fitted to a collar (Figure 201 

S3a). Six collars (60 cm  60 cm  20 cm – width  length  depth; Figure S3b) were 202 

inserted to a depth of 18 cm at each site. The basal area and volume of the chambers were 203 

0.36 m
2
 and 0.54 m

3
, respectively. The vegetation was not cut to fit the size of the chamber 204 

because this can alter gas exchange rates. Temperature, humidity and barometric pressure 205 

were measured during chamber deployment using a Commeter C4141. A pressure 206 

equalization balloon, ice packs and four fans were used to keep conditions within the 207 

chamber similar to those outside the chamber.  A 1.5 m length of Tygon tubing (3.2 mm i.d.) 208 

was used for headspace sampling (Hornibrook et al., 2009) so that observer-induced effects 209 

on CH4 flux caused by standing next to the chamber were minimized.  210 

 211 

Static chamber measurements of CH4 flux were taken every month between 09:00 and 17:00 212 

(GMT). Headspace samples of 15 mL were taken using a syringe and transferred to a pre-213 

evacuated exetainer (Labco Limited, Ceredigion, Wales) via a three-way valve. Headspace 214 

samples were then extracted every two minutes for 20 minutes, and every 10 minutes 215 

thereafter for 60 minutes. The gas samples were analyzed for CH4 content using a gas 216 

chromatograph coupled with a flame ionization detector as outlined in Baird et al. (2010). 217 

 218 

CH4 fluxes arising from linear increases in CH4 concentrations in chambers were calculated 219 

using linear regression and were based on the equations in Denmead (2008) and method 220 

described in Stamp et al. (2013). A LINEST array function in Excel was used to test the 221 

goodness of fit. The threshold used to accept the flux calculation was R
2
>0.9. None of the 222 

chamber measurements yielded non-linear chamber responses, interpreted as caused by 223 

episodic ebullition events (Altor & Mitsch, 2006). Linear increases in CH4 concentration in 224 

chambers arise from a combination of three transport pathways: diffusion, plant-mediated and 225 

steady ebullition (Hoffmann et al., 2017).  226 

 227 
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3.5 Statistical analysis 228 

Generalized additive mixed models (GAMMs; Lin and Zhang, 1999) were fitted to the funnel 229 

measurements of bubble volume flux, CH4 concentrations, and CH4 ebullition flux (i) to 230 

quantify spatial and temporal variability (RQ1) and (ii) to assess relationships with 231 

controlling environmental factors (RQ2). A GAMM quantifying spatial and temporal 232 

variability was also fitted to the static chamber measurements of CH4 flux to facilitate 233 

comparison of time-integrated chamber and funnel fluxes (RQ3). GAMMs were chosen 234 

because these models are easily interpreted and clearly encode the contribution of different 235 

predictor variables, but they are more flexible than their linear counterparts because the 236 

relationships between the dependent and independent variables may be non-linear. Including 237 

both fixed and random effects was important in this study because samples were collected 238 

from the same funnels over time, and hence observations from the same funnel may be 239 

correlated.  240 

 241 

All models were fitted using the gam function in R (R Core Team, 2017) from the gamm4 242 

package (Wood & Scheipl, 2017), specifying a log-linked gamma distribution and a 243 

continuous autoregressive structure (corCAR1) to account for temporal autocorrelation of 244 

residuals for individual funnels. For analysis of temporal and spatial variability, day of year 245 

was included as a smooth term to account for seasonality, site (NB-HN or NB-LN) was 246 

included as a fixed factor on the intercept, and replicate funnels within each site were treated 247 

as random effects on the intercept. For analysis of controlling factors, we initially considered 248 

several environmental variables as potential predictors; a Pearson correlation matrix showed 249 

that many of these variables were correlated with one another, so we fit models using only a 250 

subset. For this subset, we chose mean soil temperature and mean water level, commonly 251 

used in many other studies, as indicators of conditions relevant to CH4 production and 252 

oxidation; the standard deviation and slope of air pressure (calculated over the previous 48-253 

hrs, corresponding to the duration of funnel deployment) as indicators of conditions relevant 254 

to ebullition; and VGA (mean of six collars measured concurrently with chamber flux) as an 255 

indicator of vascular plant phenology. Models were fit using each of these predictors, as well 256 

as their combination, and the corrected Akaike Information Criterion (AICc) was used to 257 

select the most parsimonious model. During model selection, maximum likelihood (ML) was 258 

used as the estimation method, whereas restricted maximum likelihood (REML) was used to 259 

obtain final model fits.  260 

 261 
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In order to quantify the overall importance of CH4 ebullition flux as a proportion of total flux 262 

to the atmosphere (RQ3), we used both chamber and funnel measurements to separate CH4 263 

fluxes over the season into contributions from two different sets of transport mechanisms: 264 

diffusion + plant-mediated transport (D + P) versus steady + episodic ebullition (S + E). 265 

Since steady ebullition may be included in both chamber (D + P + S) and funnel (S + E) 266 

measurements, it is impossible to partition the fluxes unequivocally. Instead, we constrained 267 

our estimates by formulating two idealized extreme models (Zeide, 1991). First, if steady 268 

ebullition is zero (S = 0), the funnel captures episodic ebullition (E) only; total emission is 269 

equal to the sum of chamber and funnel fluxes (D + P + E) and (D + P) is equal to chamber 270 

flux. Second, if episodic ebullition is zero (E = 0), the funnel captures steady ebullition only; 271 

total emission is equal to chamber flux only (D + P + S) and (D + P) is equal to chamber 272 

minus funnel flux. Since chamber and funnel fluxes were unpaired, we used the time-series 273 

GAMMs to predict daily chamber and funnel fluxes for each replicate and then computed 274 

mean chamber and funnel fluxes for each site for each day. We then back-transformed these 275 

mean fluxes to original units, and calculated (D + P) and (S + E) contributions under the two 276 

extreme models for each day. Both extreme models ignore bubble production in the 40-cm 277 

thick zone above the funnels, and they both assume that bubbles collected by the funnels at 278 

40 cm depth would have been transported to the peatland surface without oxidation. When 279 

integrating flux contributions over the growing season, we assumed that bubbles released 280 

CH4 to the atmosphere only when the water table was within 5 cm of the peat surface; when 281 

water tables were more than 5 cm below the surface, we made the conservative assumption 282 

that CH4 in bubbles was completely oxidized before reaching the atmosphere, and hence that 283 

the (S + E) ebullition contribution to total CH4 flux was zero.  284 

4 Results 285 

4.1 Spatial and temporal variations in CH4 ebullition fluxes. 286 

The time-series models (i.e., using day of year as the predictor; Table 2; Figure 2; Table S3) 287 

explained more than 60% of the deviance in bubble volume flux (62 % of deviance 288 

explained), CH4 concentration in bubbles (68 %) and CH4 ebullition flux (73 %). All three 289 

response variables varied by several orders of magnitude over the season (Figure 2): bubble 290 

volume flux and CH4 ebullition flux both peaked in May and June, whereas CH4 291 

concentration in bubbles remained near-constant during this time. Both CH4 concentration 292 

and CH4 ebullition flux decreased in August corresponding to a period of drying and a 293 

marked drop in water table at both sites (Figure S4b). These seasonal patterns contrast 294 
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markedly with the relatively stable CH4 fluxes from the static chambers (Figure 2d; 66 % of 295 

deviance explained). 296 

 297 

Along with these marked seasonal patterns, bubble volume flux, CH4 concentration in 298 

bubbles and CH4 ebullition flux also showed some spatial differences. CH4 concentration in 299 

bubbles varied significantly amongst funnels within sites (Table S3) and, across sites, was 300 

significantly higher at NB-LN than at NB-HN (F1, 94 = 12.7, p = 0.00058). In contrast, bubble 301 

volume and CH4 ebullition fluxes showed little fine-scale variation amongst funnels within 302 

sites (Table S3; Figure S5b) and showed only small and non-significant (5 % significance 303 

level) differences between sites (bubble volume flux: F1, 99 = 3.23, p = 0.071; CH4 ebullition 304 

flux: F1, 98 = 3.19, p = 0.078). When integrated over the season using the time-series 305 

GAMMs, these small but consistent between-site differences resulted in CH4 ebullition fluxes 306 

that were two-fold higher at NB-LN than at NB-HN (Figure 4a). 307 

 308 

Overall, our data show that CH4 ebullition flux varies much more strongly over the season 309 

than across microsites, and the reason for this temporal variation is the focus of our modelling 310 

effort described in Section 4.2.  311 

 312 

4.2 Factors controlling temporal variations in CH4 ebullition. 313 

The environmental models (i.e., using the most parsimonious combination of environmental 314 

factors as predictors; Table 3) accounted for over two-thirds of the deviance in bubble 315 

volume flux (66 % of deviance explained), CH4 concentration (74 %) and CH4 ebullition flux 316 

(73 %), whereas the fixed effect of site was redundant in all final models (Table 3). These 317 

models highlight the importance of water level, VGA and soil temperature on CH4 318 

concentration and CH4 ebullition flux. Mean water levels more than 10 cm below ground 319 

surface were associated with very low CH4 concentrations and CH4 ebullition fluxes (Figure 320 

3). CH4 concentration and CH4 ebullition flux decreased steadily with increasing VGA. The 321 

three response variables showed contrasting relationships with mean soil temperature: bubble 322 

volume flux reached its peak at intermediate soil temperatures (10-12 
o
C), CH4 concentration 323 

remained low and then increased markedly at temperatures above 10 
o
C, and CH4 ebullition 324 

flux increased almost log-linearly with temperature across the observed range. Finally, whilst 325 

air pressure was not a significant factor controlling CH4 concentration, there was a weak 326 

negative relationship between variability in air pressure and bubble volume flux whilst a drop 327 

in air pressure during funnel deployment was associated with higher CH4 ebullition fluxes. 328 
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Random variation amongst funnels was significant for CH4 concentration, but not for bubble 329 

volume or CH4 ebullition flux (Table S4), indicating that some fine-scale spatial controls on 330 

CH4 concentration were not captured by our field campaign. 331 

4.3 The overall importance of CH4 flux via ebullition. 332 

Chamber and funnel methods yielded seasonal CH4 fluxes of similar magnitude.  Seasonal 333 

chamber flux was comparable at NB-LN and NB-HN, whereas seasonal funnel flux was two-334 

fold larger at NB-LN (Figure 4a). Contrasting estimates were obtained for the contributions 335 

from different transport pathways across the two extreme models (Figure 4b). Under the first 336 

extreme model (assuming steady ebullition = 0), a large percentage of total CH4 flux 337 

integrated over the season was contributed by episodic ebullition: 38 % for NB-HN and 54 % 338 

for NB-LN. Recall that we have made the conservative assumption that ebullition did not 339 

contribute to total CH4 flux at all when water levels dropped more than 5 cm below the 340 

peatland surface. When integrated only over the periods of high water levels, the contribution 341 

of episodic ebullition to total CH4 flux was even greater (54 % for NB-HN and 81 % for NB-342 

LN). Funnel fluxes exceeded chamber fluxes for a large part of the growing season. Hence 343 

the second extreme model (assuming episodic ebullition = 0) yielded negative contributions 344 

for diffusive + plant-mediated fluxes (Figure 4b). This implausible result indicates either net 345 

uptake of CH4 from atmosphere to soil or, more likely, that the assumption of zero episodic 346 

ebullition was unfounded.  347 

5 Discussion and Conclusions 348 

5.1 Spatial and temporal variation in CH4 ebullition in temperate floodplain fens. 349 

CH4 ebullition fluxes from the funnel traps varied seasonally by six orders of magnitude, 350 

whereas CH4 fluxes from the static chambers showed less variation. The strong, seasonal 351 

patterns in ebullition, contrary to previous studies from P. australis-dominated wetlands 352 

(Flury et al., 2010), was partly due to a sharp late-season drop in bubble CH4 concentration, 353 

but it was driven mainly by changes in bubble volume flux which depends on the inter-354 

relations among the rise velocity, number and size of bubbles released. The volume of 355 

bubbles captured by the funnels was associated with changes in air pressure, suggesting the 356 

contribution of a physical mechanism triggering bubble release. 357 

 358 

Bubble CH4 concentration is sometimes measured less frequently by researchers than bubble 359 

volume flux (Comas & Wright, 2012), but our study shows that an accurate assessment of 360 
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CH4 ebullition flux in floodplain fens requires repeated measurements of CH4 bubble 361 

concentrations over the season. The consistent, significant difference in CH4 concentration in 362 

bubbles between our two sites could be explained by edaphic factors such as substrate 363 

composition, and/or differences in peat nutrient status, through an influence on both plant 364 

productivity and biogeochemical cycling. The contrasting nutrient status of our two sites has 365 

resulted in greater plant productivity at NB-HN compared to NB-LN, as exemplified by a 366 

significant difference in above-ground biomass (Table 1). The higher plant productivity at 367 

NB-HN may result in  enhanced CH4 oxidation at depths > 40 cm in the peat (the depth of the 368 

funnels) compared with NB-LN, due to greater radial oxygen loss around plant roots 369 

(Armstrong & Armstrong, 1991; Armstrong et al., 1996).  370 

 371 

Spatial variability in CH4 ebullition flux in these P. australis-dominated fens was low, in 372 

contrast with the fine-scale hot-spots of ebullition activity observed in Sphagnum spp.-373 

dominated northern peatlands and in the Florida Everglades (Comas & Wright, 2012; Stamp 374 

et al., 2013). Whilst Stamp et al. (2013) noted a 500-fold difference (0.016 – 7.515 g CH4 m
-

375 

2
) in the highest and lowest summed CH4 ebullition fluxes measured using funnel traps within 376 

a single raised bog, our floodplain fen data for a similar time frame show only a three-fold 377 

difference (5 – 15 g CH4 mg m
-2

) in summed fluxes, across two sites of contrasting nutrient 378 

status, suggesting that upscaling of ebullition fluxes can be more confidently performed with 379 

fewer replicates in floodplain fens than in raised bogs (Ramirez et al., 2017). This has 380 

important cost-saving implications for field studies designed for the purpose of upscaling to 381 

regional or landscape scales, and for constructing greenhouse gas budgets. 382 

5.2 Environmental factors controlling temporal variations in CH4 ebullition 383 

Soil temperature exerted strong control on CH4 ebullition, with 10 
o
C marking a threshold 384 

above which CH4 concentration increased rapidly, whereas bubble volume flux switched 385 

from a positive to a negative temperature-dependence. Temperature causes increases in both 386 

microbial production and consumption of CH4 up to about 20 to 25 
o
C (Kotsyurbenko et al., 387 

2004), but the temperature-dependence of microbial production outstrips that of consumption 388 

(van Winden et al., 2012). Besides promoting greater microbial activity, increasing 389 

temperature increases bubble volume (Fechner-Levy & Hemond, 1996) and reduces gas 390 

solubility in water (Clever & Young, 1987). At temperatures below 10 
o
C, temperature-391 

induced increases in gas-phase CH4 were accommodated by an increase in bubble volume 392 

flux, through either larger and faster-rising bubbles (cf. Smirnov and Berry, 2015) or a 393 
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greater number of bubbles, or a combination of both (Figure 3a). At higher temperatures, 394 

increases in gas-phase CH4 were accommodated by an increase in bubble CH4 concentration, 395 

despite a concomitant decrease in bubble volume flux. These competing temperature-driven 396 

processes led to a near-constant log-linear increase in CH4 ebullition flux across the observed 397 

temperature range (Figure 3f). 398 

Bubble CH4 concentration and CH4 ebullition flux decreased with increasing VGA, 399 

highlighting the role of vascular plants as a control on ebullition, albeit one that was 400 

secondary to temperature. The interplay between ebullition, plant-mediated transport and 401 

rhizospheric oxidation is not yet fully understood (Green & Baird, 2012). Some researchers 402 

have suggested that vascular plants may reduce CH4 concentration in pore waters (and thus 403 

bubbles) by transporting CH4 to the atmosphere and simultaneously transferring oxygen to 404 

their roots (Chanton, 2005; Strack et al., 2017). However, vascular plants could also increase 405 

dissolved CH4 concentrations because their root exudates act as a source of labile carbon, 406 

promoting CH4 production (Green & Baird, 2012; Joabsson & Christensen, 2001). 407 

Throughout our entire field campaign NB-HN had overall higher VGA, and also lower CH4 408 

concentration in bubbles, in comparison to NB-LN (Figure S4d and Figure 2). Hence, our 409 

results suggest that the net effect of increasing vascular plant biomass at floodplain fen sites 410 

is a decrease in CH4 concentration and also CH4 ebullition fluxes (Figure 3).  411 

The importance of water level as a control on CH4 concentration and ebullition flux is also 412 

highlighted by this research, and appears to take the form of a threshold effect. An enlarged 413 

unsaturated zone increases the potential for CH4 oxidation in peat and diminishes CH4 414 

production (Hornibrook et al., 2009). The net effect of these processes is to decrease the 415 

concentration of dissolved CH4 in the unsaturated zone, usually to c. 0 mol L
-1

. Low 416 

concentrations of CH4 can also occur below the water table, and the depth at which such low 417 

concentrations persist varies by peatland, and with rainfall duration and magnitude 418 

(Hornibrook et al., 2009). At NB-LN and NB-HN, CH4 concentrations in bubbles collected at 419 

40 cm depth decreased markedly when the water table dropped 20 – 25 cm below the peat 420 

surface, during a period of very low rainfall (c. 30 mm over 6 weeks). This might indicate 421 

that oxygen is penetrating over 15 cm below the water table (via diffusion or rhizospheric 422 

oxidation), consequently elevating CH4 oxidation rates relative to production at 40 cm, and 423 

thus lowering CH4 concentrations in bubbles that are trapped by the funnels.  424 

5.3 The overall significance of ebullition fluxes in lowland floodplain fens 425 
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We have measured amongst the highest ebullition fluxes recorded to date in peatlands (up to 426 

1490 mg CH4 m
-2

 d
-1

 ; compared with fluxes in Table 1 of Yu et al. (2014)) and shown that 427 

ebullition contributes over 38 % of spring and summer CH4 emissions from these floodplain 428 

fens. Our findings confirm that ebullition is a significant transport mechanism for CH4 release 429 

from peatlands (Coulthard et al., 2009), even in fens dominated by vascular plants that 430 

transport CH4 from the soil to the atmosphere. During periods when water levels remained 431 

within 5 cm of the peat surface, ebullition was the dominant contributor to CH4 emissions. 432 

The increases in bubble volume and CH4 ebullition fluxes that occurred with changes in air 433 

pressure, as well as the large excess of funnel fluxes (sum of episodic + steady ebullition 434 

fluxes) over chamber fluxes (sum of diffusive + plant-mediated + steady ebullition fluxes) 435 

during periods of high water levels, point to episodic release being a major component of 436 

CH4 ebullition flux. Sampling programs that fail to capture episodic ebullition could badly 437 

under-estimate total CH4 emissions from these landscapes. 438 

The implications of ebullition for total CH4 emission will depend on how much, if any, CH4 439 

is stripped from bubbles as they move from the depth of ebullition flux measurement (in this 440 

case 40 cm depth) to the atmosphere. CH4 fluxes measured by the funnels exceeded those 441 

from chamber measurements at a time when the water table was above the soil surface (> 5 442 

cm) at NB-HN and within 5 cm of the surface at NB-LN, when the saturated zone is likely to 443 

be predominantly anoxic. However, the extent of CH4 oxidation as the bubbles move towards 444 

the water-air interface is likely to differ across sites, and will depend on rates of CH4 445 

oxidation versus bubble residence time. To our knowledge, no studies have directly measured 446 

CH4 oxidation rates in floodplain fens and it is an area warranting further study.  447 

  448 

Does it matter whether CH4-containing bubbles are released steadily or episodically? In order 449 

to quantify adequately the episodic component of ebullition, researchers need to know when 450 

to target field measurements. Episodic ebullition can be triggered by abrupt rises and falls in 451 

barometric pressure (Comas & Wright, 2012; Glaser et al., 2004; Strack et al., 2005; Tokida 452 

et al., 2005) or water level, but considerable uncertainty remains regarding the relative 453 

importance of each (Chen & Slater, 2015). We found that atmospheric pressure drops were 454 

associated with higher ebullition fluxes than atmospheric pressure increases, whilst rises or 455 

falls in water level were not a significant controlling factor. The greatest atmospheric 456 

pressure drop (measured as the overall slope of 48-hrs’ data) that we recorded during funnel 457 

deployment was 50 Pa h
-1 

which is
 
comparable to the magnitude of pressure drops found by 458 

Tokida et al. (2005) to cause episodic ebullition from a bog peat monolith. In our study, the 459 



Confidential manuscript submitted to JGR: Biogeosciences 

 15 

drops in air pressure occurred with the passage of cold fronts across the UK from the 460 

Atlantic. Pressure changes arising from the passage of low pressure weather systems could 461 

give rise to significant increases in CH4 ebullition fluxes from lowland peatlands, with 462 

episodic ebullition events superimposed over steady ebullition fluxes. Automated gas traps 463 

and chambers (Goodrich et al., 2011; Comas & Wright, 2012; Hoffmann et al., 2017) provide 464 

the high temporal resolution sampling required to separate CH4 contributions from steady and 465 

episodic ebullition. As discussed above, this approach needs to be combined with repeated 466 

measurement of CH4 concentration. 467 

 468 

Management of water levels and vegetation in floodplain fens has the potential to alter the 469 

relative importance of different CH4 transport mechanisms, and hence the total CH4 flux to 470 

the atmosphere. By their very nature, floodplain fens are associated with rapid increases in 471 

water level, which Bon et al. (2014) suggest can trigger significant ebullition events. We did 472 

not measure ebullition during two large rainfall events in winter 2013, when increases in river 473 

level at both sites led to flooding of the order of tens of centimetres. Future research should 474 

aim to assess the influence of such events on the magnitude of episodic ebullition from 475 

floodplain fens, as well as the impact of artificially maintaining high water levels. Vegetation 476 

management practices such as reed-cutting, which reduce vascular plant biomass for several 477 

years, have the potential to reduce plant-mediated transport of CH4 but also to increase CH4 478 

ebullition by limiting the magnitude of rhizospheric CH4 oxidation. Further investigation is 479 

warranted on the net effect of these common management practices on total CH4 emissions.  480 

5.4 Conclusions 481 

Ebullition is a major component (> 38%) of CH4 emissions from temperate floodplain fens 482 

over spring and summer, showing considerable temporal variation arising from changes in 483 

water level, plant phenology and air pressure. Significant challenges remain in quantifying 484 

the importance of different CH4 transport pathways; however, such apportionment of 485 

transport mechanisms is necessary to understand the effect of management strategies on 486 

reducing CH4 emissions from lowland fens. Specifically, total CH4 emissions will depend on 487 

how CH4 ebullition and plant-mediated CH4 transport respond to management of both water 488 

level and vegetation.  489 
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Tables 687 

 688 

Table 1. Site vegetation and nutrient status. 689 

Site NB-HN
a
 NB-LN

a
 

Dominant plant species P. australis, 

Eupatorium 

cannabinum L. 

(1753) 

P. australis, 

Peucedanum palustre 

(L.) Moench (1794) 

Mean aboveground biomass (g m
-2

)
b
 1578 (169, n=6) 435 (42, n=6) 

Plant height (cm)
b
 107 (7.8, n=6) 57 (5.1, n=6) 

Foliar N content (g kg
-1

)
b 22 (1.5, n=6) 16 (1.5, n=6) 

Foliar P content (g kg
-1

)
b 2 (0.2, n=6) 1.1 (0.1, n=6) 

Foliar C/N quotient
b 20 (1.4, n=6) 27 (2.8, n=6) 

Foliar C/P quotient
b 210 (2.3, n=6) 388 (5.2, n=6) 

Foliar N/P quotient
b
 11 (0.9, n=6) 15 (1.3, n=6) 

Peat depth (m)
c 9.0 5.0 

Peat N content  (g kg
-1

, 0-15 cm 

depth)
d
 

28 (0.4, n=5) 18 (0.9, n=5) 

Peat P content  (g kg
-1

, 0-15 cm depth)
d 0.9 (0.02, n=5)  0.4 (0.01, n=5) 

Peat C/N quotient (0-15 cm depth)
d 13 (0.22, n=5) 20 (0.5, n=5) 

Peat C/P quotient (0-15 cm depth)
d 502 (23, n=5) 856 (62, n=5) 

Peat N/P quotient (0-15 cm depth)
d
 31 (1.1, n=5) 45 (2.5, n=5) 

Peat pH 6.5 (0.01, n = 3) 6.5 (0.02, n = 3) 

Peat electrical conductivity (µS cm
-1

)
d 863 (83, n = 3) 1715 (169, n = 3) 

a
Data in brackets are ±1 Standard Error of n replicates per site.  

b
Sampled in Sept 2012.

 
690 

c
Lambert et al. (1960). 

d
Sampled in March 2013. 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 
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 701 

Table 2. Goodness-of-fit information for time-series GAMM models of bubble volume flux, 702 

methane concentration, methane ebullition flux (all from funnels) and methane flux from 703 

static chambers. Results are shown for models including increasing numbers of random 704 

(funnel or chamber) and fixed (constant, Site, DOY, where DOY is day of year) effects. The 705 

final model described in the main text is shown in italic font. Smooth functions are denoted 706 

by s(…). The number of parameters used in the model is given by df. ΔAICc is the corrected 707 

Akaike Information Criterion (AICc) of the model of interest, minus the AICc of the final 708 

model. Deviance, a goodness-of-fit statistic used when the statistical model is fit by 709 

maximum-likelihood, measures the deviation from a model that is a perfect fit to the data. D
2
 710 

is the percentage deviance explained by the model of interest, referenced to the null model. 711 

 712 

Model formula Note df ΔAICc Deviance D
2
 

(%) 

Bubble volume flux ~      

   constant null 2.0 104 407 - 

   constant + s(funnel) random 

only 

20.9 111 311 24 

   constant + s(funnel) + Site  19.1 103 306 25 

   constant + s(funnel) + s(DOY)  16.6 2 156 62 

   constant + s(funnel) + Site + s(DOY) final 17.1 0 153 62 

      

Methane concentration ~      

   constant null 2.0 117 492 - 

   constant + s(funnel) random 

only 

20.3 125 387 21 

   constant + s(funnel) + Site  16.1 115 393 20 

   constant + s(funnel) + s(DOY)  23.8 7 157 68 

   constant + s(funnel) + Site + s(DOY) final 21.3 0 158 68 

      

Methane ebullition flux ~      

   constant null 2.0 164 707 - 

   constant + s(funnel) random 

only 

11.6 174 657 7 

   constant + s(funnel) + Site  8.0 168 669 5 

   constant + s(funnel) + s(DOY)  17.6 3 193 73 

   constant + s(funnel) + Site + s(DOY) final 17.9 0 188 73 

      

Chamber methane flux ~      

   constant null 2.0 41 118 - 

   constant + s(chamber) random 

only 

10.5 20 66 44 

   constant + s(chamber) + Site  11.0 21 65 44 

   constant + s(chamber) + s(DOY)  14.2 -1 40 66 

   constant + s(chamber) + Site + 

s(DOY) 

final 14.7 0 40 66 

 713 

 714 

 715 

Table 3. Goodness-of-fit information for controlling-factors GAMM models of bubble 716 

volume flux, methane concentration and methane ebullition flux. Results are shown for 717 
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models including increasing numbers of random (funnel) and fixed effects. The final model 718 

presented in the main text is shown in italic font. Smooth functions are denoted by s(…). The 719 

number of parameters used in the model is given by df. ΔAICc is the corrected Akaike 720 

Information Criterion (AICc) of the model of interest, minus the AICc of the final model. 721 

Deviance, a goodness-of-fit statistic used when the statistical model is fit by maximum-722 

likelihood, measures the deviation from a model that is a perfect fit to the data. D
2
 is the 723 

percentage deviance explained by the model of interest, referenced to the null model. Fixed 724 

effects are abbreviated as follows: MST, mean soil temperature (°C); SDAP, standard 725 

deviation of air pressure (cm water); MWL, mean water level (cm); VGA, vascular green 726 

area (unitless); SLAP, slope of air pressure (cm water h
-1

). 727 

 728 

Model formula Note df ΔAICc Deviance D
2
 

(%) 

Bubble volume flux ~      

   constant null 2.0 115 407 - 

   constant + s(funnel) random 

only 

20.9 122 311 24 

   constant + s(funnel) + s(SDAP)  19.5 18 154 62 

   constant + s(funnel) + s(MST)  18.3 7 145 64 

   constant + s(funnel) + s(MST) + s(SDAP) final 17.9 0 139 66 

      

Methane concentration ~      

   constant null 2.0 129 492 - 

   constant + s(funnel) random 

only 

20.3 137 387 21 

   constant + s(funnel) + s(VGA)  27.1 16 142 71 

   constant + s(funnel) + s(MST)  30.1 6 121 76 

   constant + s(funnel) + s(MWL)  26.4 1 129 74 

   constant + s(funnel) + s(MST) + s(MWL) 

+ s(VGA) 

final 25.9 0 129 74 

      

Methane ebullition flux ~      

   constant null 2.0 172 707 - 

   constant + s(funnel) random 

only 

11.6 179 657 7 

   constant + s(funnel) + s(SLAP)  6.1 162 634 10 

   constant + s(funnel) + s(MWL)  17.4 17 212 70 

   constant + s(funnel) + s(MST)  28.3 6 166 77 

   constant + s(funnel) + s(VGA)  21.3 3 181 75 

   constant + s(funnel) + s(MST) + s(MWL) 

+ s(VGA) + s(SLAP) 

final 16.5 0 190 73 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 
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 737 

Figure 1. Location map of Sutton (NB-LN) and Strumpshaw (NB-HN) Fen. For full 738 

description of peat horizons see Table S2. 739 
 740 

Figure 2. Time series of a) bubble volume flux, b) methane concentration and c) methane 741 

ebullition flux from the funnels, and d) methane flux from the chambers. Lines and shading 742 

are summed effects (mean ± 95% confidence intervals) of the generalized additive mixed 743 

models, with day of year as a smooth term, site as a fixed factor on the intercept and funnel as 744 

a random effect on the intercept. 745 

 746 

Figure 3. Conditional effects (± 95% confidence intervals) of environmental variables on 747 

bubble volume flux (top row), methane concentration (middle row) and methane ebullition 748 

flux (bottom row). Funnel was included as a random effect on the intercept. 749 

 750 

Figure 4. Separation of total CH4 fluxes into contributions from different transport 751 

mechanisms. a) CH4 fluxes (median +/- interquartile range, summed from days 102 to 211) 752 

determined by chamber and funnel methods. The line within the bar for NB-LN funnel 753 

method is the flux for a period of high water levels, i.e., the peatland was either flooded or 754 

water level was less than 5 cm below the peatland surface (days 102 to 168; see also Fig. 755 

S1b). For NB-HN, the summed funnel flux for the period of high water levels (days 102 to 756 

187) was indistinguishable from that for the full period. b) Time series of total CH4 fluxes 757 

with contributions from different transport mechanisms, presented by site (columns) and 758 

idealized extreme model (rows). Each panel shows a time series of estimated fluxes due to 759 

diffusion + plant-mediated transport, stacked on to steady + episodic ebullition. Total flux is 760 

shown as a black line. The idealized extreme models were as follows. Upper panels: If steady 761 

ebullition is zero, the funnel captures episodic ebullition only and total emission is equal to 762 

the sum of chamber and funnel fluxes. Lower panels: If episodic ebullition is zero, the funnel 763 

captures steady ebullition only and total emission is equal to chamber flux only. Under the 764 

latter extreme, the negative contribution by diffusion + plant-mediated transport in mid-765 

season indicates either that CH4 was taken up from the atmosphere or, more likely, that the 766 

idealized model of zero episodic emission was invalid. Both extreme models assume that 767 

bubbles collected by the funnels at 40 cm depth would have been transported to the peatland 768 

surface without oxidation. This assumption is likely to have been met during the period of 769 

high water levels, shown to the left of the dashed grey line (day 102 to 187 for NB-HN and 770 

day 102 to 168 for NB-LN). Bubble production in the 40-cm thick zone above the funnel is 771 

not included in the estimates of ebullition flux. 772 
 773 

 774 
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