8 research outputs found

    Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system

    Full text link
    Photoinduced intramolecular electron transfer in linked systems, (R,S)- and (S,S)-naproxen-N-methylpyrrolidine dyads, has been studied by means of spin chemistry methods [magnetic field effect and chemically induced dynamic nuclear polarization (CIDNP)]. The relative yield of the triplet state of the dyads in different magnetic field has been measured, and dependences of the high-field CIDNP of the N-methylpyrrolidine fragment on solvent polarity have been investigated. However, both (S,S)- and (R,S)-enantiomers demonstrate almost identical CIDNP effects for the entire range of polarity. It has been demonstrated that the main peculiarities of photoprocesses in this linked system are connected with the participation of singlet exciplex alongside with photoinduced intramolecular electron transfer in chromophore excited state quenching.This work was supported by the grants 08-03-00372 and 11-03-01104 of the Russian Foundation for Basic Research, and the grant of Priority Programs of the Russian Academy of Sciences, nr. 5.1.5.Magin, I.; Polyakov, N.; Khramtsova, E.; Kruppa, A.; Stepanov, A.; Purtov, P.; Leshina, T.... (2011). Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system. Applied Magnetic Resonance. 41(2-4):205-220. https://doi.org/10.1007/s00723-011-0288-3S205220412-4J.S. Park, E. Karnas, K. Ohkubo, P. Chen, K.M. Kadish, S. Fukuzumi, C.W. Bielawski, T.W. Hudnall, V.M. Lynch, J.L. Sessler, Science 329, 1324–1327 (2010)S.Y. Reece, D.G. Nocera, Annu. Rev. Biochem. 78, 673–699 (2009)M.S. Afanasyeva, M.B. Taraban, P.A. Purtov, T.V. Leshina, C.B. Grissom, J. Am. Chem. Soc. 128, 8651–8658 (2006)M.A. Fox, M. Chanon, in Photoinduced Electron Transfer. C: Photoinduced Electron Transfer Reactions: Organic Substrates (Elsevier, New York, 1988), p. 754P.J. Hayball, R.L. Nation, F. Bochner, Chirality 4, 484–487 (1992)N. Suesa, M.F. Fernandez, M. Gutierrez, M.J. Rufat, E. Rotllan, L. Calvo, D. Mauleon, G. Carganico, Chirality 5, 589–595 (1993)A.M. Evans, J. Clin. Pharmacol. 36, 7–15 (1996)Y. Inoue, T. Wada, S. Asaoka, H. Sato, J.-P. Pete, Chem Commun. 4, 251–259 (2000)T. Yorozu, K. Hayashi, M. Irie, J. Am. Chem. Soc. 103, 5480–5548 (1981)N.J. Turro, in Modern Molecular Photochemistry (Benjamin/Cummings, San Francisco, 1978)K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, in Spin Polarization and Magnetic Field Effects in Radical Reactions (Akademiai Kiado, Budapest, 1984), p. 419E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 107, 3639–3647 (2003)A.S. Lukas, P.J. Bushard, E.A. Weiss, M.R. Wasielewski, J. Am. Chem. Soc. 125, 3921–3930 (2003)R. Nakagaki, K. Mutai, M. Hiramatsu, H. Tukada, S. Nakakura, Can. J. Chem. 66, 1989–1996 (1988)M.C. Jim′enez, U. Pischel, M.A. Miranda, J. Photochem. Photobiol. C Photochem. Rev. 8, 128–142 (2007)S. Abad, U. Pischel, M.A. Miranda, Photochem. Photobiol. Sci. 4, 69–74 (2005)U. Pischel, S. Abad, L.R. Domingo, F. Bosca, M.A. Miranda, Angew. Chem. Int. Ed. 42, 2531–2534 (2003)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 101, 1639–1641 (1979)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 103, 3586–3588 (1981)M. Goez, Chem. Phys. Lett. 188, 451–456 (1992)I.F. Molokov, Y.P. Tsentalovich, A.V. Yurkovskaya, R.Z. Sagdeev, J. Photochem. Photobiol. A 110, 159–165 (1997)U. Pischel, S. Abad, M.A. Miranda, Chem. Commun. 9, 1088–1089 (2003)H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 57, 322–328 (1984)Y. Sakaguchi, H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 53, 39–42 (1980)H. Yonemura, H. Nakamura, T. Matsuo, Chem. Phys. Lett. 155, 157–161 (1989)N. Hata, M. Hokawa, Chem. Lett. 10, 507–510 (1981)M. Shiotani, L. Sjoeqvist, A. Lund, S. Lunell, L. Eriksson, M.B. Huang, J. Phys. Chem. 94, 8081–8090 (1990)E. Schaffner, H. Fischer, J. Phys. Chem. 100, 1657–1665 (1996)Y. Mori, Y. Sakaguchi, H. Hayashi, Chem. Phys. Lett. 286, 446–451 (1998)I.M. Magin, A.I. Kruppa, P.A. Purtov, Chem. Phys. 365, 80–84 (2009)K.K. Barnes, Electrochemical Reactions in Nonaqueous Systems (M. Dekker, New York, 1970), p. 560J. Bargon, J. Am. Chem. Soc. 99, 8350–8351 (1977)M. Goez, I. Frisch, J. Phys. Chem. A 106, 8079–8084 (2002)A.K. Chibisov, Russ. Chem. Rev. 50, 615–629 (1981)J. Goodman, K. Peters, J. Am. Chem. Soc. 107, 1441–1442 (1985)H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C.-H. Tung, Y. Tanimoto, Bull. Chem. Soc. Jpn. 69, 2801–2813 (1996)P.A. Purtov, A.B. Doktorov, Chem. Phys. 178, 47–65 (1993)A.I. Kruppa, O.I. Mikhailovskaya, T.V. Leshina, Chem. Phys. Lett. 147, 65–71 (1988)M.E. Michel-Beyerle, R. Haberkorn, W. Bube, E. Steffens, H. Schröder, H.J. Neusser, E.W. Schlag, H. Seidlitz, Chem. Phys. 17, 139–145 (1976)K. Schulten, H. Staerk, A. Weller, H.-J. Werner, B. Nickel, Z. Phys. Chem. 101, 371–390 (1976)K. Gnadig, K.B. Eisenthal, Chem. Phys. Lett. 46, 339–342 (1977)T. Nishimura, N. Nakashima, N. Mataga, Chem. Phys. Lett. 46, 334–338 (1977)M.G. Kuzmin, I.V. Soboleva, E.V. Dolotova, D.N. Dogadkin, High Eng. Chem. 39, 86–96 (2005

    Synthesis and binding properties of guanidinium biscarboxylates

    No full text
    The ammonium ion binding site of the enzyme glutaminase HisF inspired us to design guanidinium biscarboxylates as potential self-organized ionophores in molecular recognition. The syntheses of the title compounds based on aliphatic and aromatic building blocks, along with a general method for the preparation of δ-aminoethoxyacetic acids, are presented in this work. Investigation of the binding properties of the title compounds in dimethyl sulfoxide (DMSO) and methanol solution revealed no ammonium ion affinity, but interaction of the guanidinium moiety with acetate ions

    Hailey–Hailey Disease: An Update Review with a Focus on Treatment Data

    No full text
    corecore