3,368 research outputs found

    Greater than the parts: a review of the information decomposition approach to causal emergence.

    Get PDF
    Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing. This theory relates emergence with information about a system's temporal evolution that cannot be obtained from the parts of the system separately. This article provides an accessible but rigorous introduction to the framework, discussing the merits of the approach in various scenarios of interest. We also discuss several interpretation issues and potential misunderstandings, while highlighting the distinctive benefits of this formalism. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'

    Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size

    Get PDF
    Background Vertebrate retinal photoreceptors are morphologically complex cells that have two apical regions, the inner segment and the outer segment. The outer segment is a modified cilium and is continuously regenerated throughout life. The molecular and cellular mechanisms that underlie vertebrate photoreceptor morphogenesis and the maintenance of the outer segment are largely unknown. The Crumbs (Crb) complex is a key regulator of apical membrane identity and size in epithelia and in Drosophila photoreceptors. Mutations in the human gene CRUMBS HOMOLOG 1 (CRB1) are associated with early and severe vision loss. Drosophila Crumbs and vertebrate Crb1 and Crumbs homolog 2 (Crb2) proteins are structurally similar, all are single pass transmembrane proteins with a large extracellular domain containing multiple laminin- and EGF-like repeats and a small intracellular domain containing a FERM-binding domain and a PDZ-binding domain. In order to begin to understand the role of the Crb family of proteins in vertebrate photoreceptors we generated stable transgenic zebrafish in which rod photoreceptors overexpress full-length Crb2a protein and several other Crb2a constructs engineered to lack specific domains. Results We examined the localization of Crb2a constructs and their effects on rod morphology. We found that only the full-length Crb2a protein approximated the normal localization of Crb2a protein apical to adherens junctions in the photoreceptor inner segment. Several Crb2a construct proteins localized abnormally to the outer segment and one construct localized abnormally to the cell body. Overexpression of full-length Crb2a greatly increased inner segment size while expression of several other constructs increased outer segment size. Conclusions Our observations suggest that particular domains in Crb2a regulate its localization and thus may regulate its regionalized function. Our results also suggest that the PDZ-binding domain in Crb2a might bring a protein(s) into the Crb complex that alters the function of the FERM-binding domain

    Adhesion of volcanic ash particles under controlled conditions and implications for their deposition in gas turbines

    Get PDF
    A particular (representative) type of ash has been used in this study, having a particle size range of ~10-70 µm. Experimental particle adhesion rate data are considered in conjunction with CFD modeling of particle velocities and temperatures. This ash becomes soft above ~700˚C and it has been confirmed that a sharp increase is observed in the likelihood of adhesion as particle temperatures move into this range. Particle size is important and those in the approximate range 10-30 µm are most likely to adhere. This corresponds fairly closely with the size range that is most likely to enter a combustion chamber and turbine.This work forms part of a research programme funded by EPSRC (EP/K027530/1). In conjunction with this project, a consortium of partners has been set up under the PROVIDA ("PROtection against Volcanic ash Induced Damage in Aeroengines") banner and information about its operation is available at http://www.ccg.msm.cam.ac.uk/initiatives/provida. The invaluable assistance of Kevin Roberts (Materials Department in Cambridge) with operation of the plasma spray facility is gratefully acknowledged. The authors are also grateful to Dr. Margaret Hartley, of the University of Manchester, for kindly collecting the Laki ash (and several other types) during field trips to Iceland, which were funded by EasyJet.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/adem.201500371 In compliance with current EPSRC requirements, input data for the modelling described in this paper, including meshing and boundary condition specifications, are available at the following URL: www.ccg.msm.cam.ac.uk/publications/resources. These files can be downloaded and used in COMSOL Multiphysics packages. Data supplied are for a representative case

    Ultrasensitive force and displacement detection using trapped ions

    Full text link
    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN/HzaN/\sqrt{Hz} (atto =1018=10^{-18}) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 yNyN (yocto =1024=10^{-24}), with a sensitivity 390±150\pm150 yN/HzyN/\sqrt{Hz} using crystals of n=60n=60 9^{9}Be+^{+} ions in a Penning trap. Our technique is based on the excitation of normal motional modes in an ion trap by externally applied electric fields, detection via and phase-coherent Doppler velocimetry, which allows for the discrimination of ion motion with amplitudes on the scale of nanometers. These experimental results and extracted force-detection sensitivities in the single-ion limit validate proposals suggesting that trapped atomic ions are capable of detecting of forces with sensitivity approaching 1 yN/HzyN/\sqrt{Hz}. We anticipate that this demonstration will be strongly motivational for the development of a new class of deployable trapped-ion-based sensors, and will permit scientists to access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to press embarg

    k-Ary spanning trees contained in tournaments

    Get PDF
    A rooted tree is called a kk-ary tree, if all non-leaf vertices have exactly kk children, except possibly one non-leaf vertex has at most k1k-1 children. Denote by h(k)h(k) the minimum integer such that every tournament of order at least h(k)h(k) contains a kk-ary spanning tree. It is well-known that every tournament contains a Hamiltonian path, which implies that h(1)=1h(1)=1. Lu et al. [J. Graph Theory {\bf 30}(1999) 167--176] proved the existence of h(k)h(k), and showed that h(2)=4h(2)=4 and h(3)=8h(3)=8. The exact values of h(k)h(k) remain unknown for k4k\geq 4. A result of Erd\H{o}s on the domination number of tournaments implies h(k)=Ω(klogk)h(k)=\Omega(k\log k). In this paper, we prove that h(4)=10h(4)=10 and h(5)13h(5)\geq13.Comment: 11 pages, to appear in Discrete Applied Mathematic

    Nanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles

    Get PDF
    Background: Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;). Methodology/Principal Findings: We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods. Conclusions/Significance: Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms

    Podoplanin: An Emerging Cancer Biomarker and Therapeutic Target

    Get PDF
    Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma
    corecore