2,833 research outputs found
Recommended from our members
Incremental learning of independent, overlapping, and graded concept descriptions with an instance-based process framework
Supervised learning algorithms make several simplifying assumptions concerning the characteristics of the concept descriptions to be learned. For example, concepts are often assumed to be (1) defined with respect to the same set of relevant attributes, (2) disjoint in instance space, and (3) have uniform instance distributions. While these assumptions constrain the learning task, they unfortunately limit an algorithm's applicability. We believe that supervised learning algorithms should learn attribute relevancies independently for each concept, allow instances to be members of any subset of concepts, and represent graded concept descriptions. This paper introduces a process framework for instance-based learning algorithms that exploit only specific instance and performance feedback information to guide their concept learning processes. We also introduce Bloom, a specific instantiation of this framework. Bloom is a supervised, incremental, instance-based learning algorithm that learns relative attribute relevancies independently for each concept, allows instances to be members of any subset of concepts, and represents graded concept memberships. We describe empirical evidence to support our claims that Bloom can learn independent, overlapping, and graded concept descriptions
Recommended from our members
Comparing instance-averaging with instance-saving learning algorithms
The goal of our research is to understand the power and appropriateness of instance-based representations and their associated acquisition methods. This paper concerns two methods for reducing storage requirements for instance-based learning algorithms. The first method, termed instance-saving, represents concept descriptions by selecting and storing a representative subset of the given training instances. We provide an analysis for instance-saving techniques and specify one general class of concepts that instance-saving algorithms are capable of learning. The second method, termed instance-averaging, represents concept descriptions by averaging together some training instances while simply saving others. We describe why analyses for instance-averaging algorithms are difficult to produce. Our empirical results indicate that storage requirements for these two methods are roughly equivalent. We outline the assumptions of instance-averaging algorithms and describe how their violation might degrade performance. To mitigate the effects of non-convex concepts, a dynamic thresholding technique is introduced and applied in both the averaging and non-averaging learning algorithms. Thresholding increases the storage requirements but also increases the quality of the resulting concept descriptions
Spontaneous Analogy by Piggybacking on a Perceptual System
Most computational models of analogy assume they are given a delineated
source domain and often a specified target domain. These systems do not address
how analogs can be isolated from large domains and spontaneously retrieved from
long-term memory, a process we call spontaneous analogy. We present a system
that represents relational structures as feature bags. Using this
representation, our system leverages perceptual algorithms to automatically
create an ontology of relational structures and to efficiently retrieve analogs
for new relational structures from long-term memory. We provide a demonstration
of our approach that takes a set of unsegmented stories, constructs an ontology
of analogical schemas (corresponding to plot devices), and uses this ontology
to efficiently find analogs within new stories, yielding significant
time-savings over linear analog retrieval at a small accuracy cost.Comment: Proceedings of the 35th Meeting of the Cognitive Science Society,
201
Evolutionary approach to overcome initialization parameters in classification problems
Proceeding of: 7th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2003 Maó, Menorca, Spain, June 3–6, 2003.The design of nearest neighbour classifiers is very dependent from some crucial parameters involved in learning, like the number of prototypes to use, the initial localization of these prototypes, and a smoothing parameter. These parameters have to be found by a trial and error process or by some automatic methods. In this work, an evolutionary approach based on Nearest Neighbour Classifier (ENNC), is described. Main property of this algorithm is that it does not require any of the above mentioned parameters. The algorithm is based on the evolution of a set of prototypes that can execute several operators in order to increase their quality in a local sense, and emerging a high classification accuracy for the whole classifier
Recommended from our members
Detecting and removing noisy instances from concept descriptions
Several published results show that instance-based learning algorithms record high classification accuracies and low storage requirements when applied to supervised learning tasks. However, these learning algorithms are highly sensitive to training set noise. This paper describes a simple extension of instance-based learning algorithms for detecting and removing noisy instances from concept descriptions. The extension requires evidence that saved instances be significantly good classifiers before it allows them to be used for subsequent classification tasks. We show that this extension's performance degrades more slowly in the presence of noise, improves classification accuracies, and further reduces storage requirements in several artificial and real-world databases
Recommended from our members
Instance-based prediction of real-valued attributes
Instance-based representations have been applied to numerous classification tasks with a fair amount of success. These tasks predict a symbolic class based on observed attributes. This paper presents a method for predicting a numeric value based on observed attributes. We prove that if the numeric values are generated by continuous functions with bounded slope, then the predicted values are accurate approximations of the actual values. We demonstrate the utility of this approach by comparing it with standard approaches for value-prediction. The approach requires no background knowledge
Transforming Graph Representations for Statistical Relational Learning
Relational data representations have become an increasingly important topic
due to the recent proliferation of network datasets (e.g., social, biological,
information networks) and a corresponding increase in the application of
statistical relational learning (SRL) algorithms to these domains. In this
article, we examine a range of representation issues for graph-based relational
data. Since the choice of relational data representation for the nodes, links,
and features can dramatically affect the capabilities of SRL algorithms, we
survey approaches and opportunities for relational representation
transformation designed to improve the performance of these algorithms. This
leads us to introduce an intuitive taxonomy for data representation
transformations in relational domains that incorporates link transformation and
node transformation as symmetric representation tasks. In particular, the
transformation tasks for both nodes and links include (i) predicting their
existence, (ii) predicting their label or type, (iii) estimating their weight
or importance, and (iv) systematically constructing their relevant features. We
motivate our taxonomy through detailed examples and use it to survey and
compare competing approaches for each of these tasks. We also discuss general
conditions for transforming links, nodes, and features. Finally, we highlight
challenges that remain to be addressed
Integrating testing techniques through process programming
Integration of multiple testing techniques is required to demonstrate high quality of software. Technique integration has three basic goals: incremental testing capabilities, extensive error detection, and cost-effective application. We are experimenting with the use of process programming as a mechanism of integrating testing techniques. Having set out to integrate DATA FLOW testing and RELAY, we proposed synergistic use of these techniques to achieve all three goals. We developed a testing process program much as we would develop a software product from requirements through design to implementation and evaluation. We found process programming to be effective for explicitly integrating the techniques and achieving the desired synergism. Used in this way, process programming also mitigates many of the other problems that plague testing in the software development process
- …
