2,833 research outputs found

    Spontaneous Analogy by Piggybacking on a Perceptual System

    Full text link
    Most computational models of analogy assume they are given a delineated source domain and often a specified target domain. These systems do not address how analogs can be isolated from large domains and spontaneously retrieved from long-term memory, a process we call spontaneous analogy. We present a system that represents relational structures as feature bags. Using this representation, our system leverages perceptual algorithms to automatically create an ontology of relational structures and to efficiently retrieve analogs for new relational structures from long-term memory. We provide a demonstration of our approach that takes a set of unsegmented stories, constructs an ontology of analogical schemas (corresponding to plot devices), and uses this ontology to efficiently find analogs within new stories, yielding significant time-savings over linear analog retrieval at a small accuracy cost.Comment: Proceedings of the 35th Meeting of the Cognitive Science Society, 201

    Evolutionary approach to overcome initialization parameters in classification problems

    Get PDF
    Proceeding of: 7th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2003 Maó, Menorca, Spain, June 3–6, 2003.The design of nearest neighbour classifiers is very dependent from some crucial parameters involved in learning, like the number of prototypes to use, the initial localization of these prototypes, and a smoothing parameter. These parameters have to be found by a trial and error process or by some automatic methods. In this work, an evolutionary approach based on Nearest Neighbour Classifier (ENNC), is described. Main property of this algorithm is that it does not require any of the above mentioned parameters. The algorithm is based on the evolution of a set of prototypes that can execute several operators in order to increase their quality in a local sense, and emerging a high classification accuracy for the whole classifier

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Integrating testing techniques through process programming

    Get PDF
    Integration of multiple testing techniques is required to demonstrate high quality of software. Technique integration has three basic goals: incremental testing capabilities, extensive error detection, and cost-effective application. We are experimenting with the use of process programming as a mechanism of integrating testing techniques. Having set out to integrate DATA FLOW testing and RELAY, we proposed synergistic use of these techniques to achieve all three goals. We developed a testing process program much as we would develop a software product from requirements through design to implementation and evaluation. We found process programming to be effective for explicitly integrating the techniques and achieving the desired synergism. Used in this way, process programming also mitigates many of the other problems that plague testing in the software development process
    corecore