Evolutionary Approach to Overcome Initialization
Parameters in Classification Problems

P. Isasi,F. Fernandez

Computer Science department
Universidad Carlos III de Madrid

Abstract The design of nearest neighbour classifiers is very dependent from
some crucial parameters involved in learning, like the number of prototypes to
use, the initial localization of these prototypes, and a smoothing parameter. These
parameters have to be found by a trial and error process or by some automatic
methods. In this work, an evolutionary approach based on Nearest Neighbour
Classifier (ENNC), is described. Main property of this algorithm is that it does
not require any of the above mentioned parameters. The algorithm is based on
the evolution of a set of prototypes that can execute several operators in order to
increase their quality in a local sense, and emerging a high classification accuracy
for the whole classifier.

1 INTRODUCTION

Nearest Neighbour Classifiers are defined as the sort of classifiers that assign to each

new unlabelled example, v, € V = {v1,...,vn}, the label of the nearest prototype,
r;, from a set, C = {ry,...,rn}, of N prototypes previously classified [DH73]. The
set of different labels or classes is S = {s1,...,sr}.

The design of these classifiers is difficult, and rely in the way of defining the number
of prototypes needed to achieve a good accuracy, as well as the initial set of prototypes
used and, usually, a smoothing parameter. Many discussions about what is the right
technique to use can be found in the literature. Some approaches based on clustering
techniques are divided in two main steps. The first one is to cluster a set of unlabelled
input data to obtain a reduced set of prototypes, for instance, with the LBG algorithm.
The second step is to classify these prototypes basing on previosly labelled examples
and the nearest neighbour rule. Although this approach produces good results, it is ob-
vious that to introduce information about the classification performance in the location
of the prototypes seems to be needed to achieve a higher performance.

Neural networks approaches are also very common in the literature, like the LVQ
algorithm [Koh84] and the works with radial basis functions. Some techniques try to in-
troduce or to eliminate prototypes (or neurons) while designing the classifier following
different heuristics, as the average quantization distortion or the accuracy in the classi-
fication. Other approaches try to define first the optimal size of the classifier and then
to learn it using the previous value.

In this work, an evolutionary approach called Evolutionary Nearest Neighbour Clas-
sifier (ENNC), is introduced to dynamically define the number of prototypes of the
classifier as well as the location of these prototypes.

Referencia bibliográfica
Published in:
Computational methods in neural modeling. Berlin: Springer, 2003. p. 1038 (Lecture Notes in Computer Science; 2686)

2 THE ENNC ALGORITHM

2.1 Architecture

The system can be represented by a bidimensional matrix, where each row is associated
to aregionr; € C, and each column is associated to a class s; € S. Each position (3, j)
of the matrix is a structure that contains features about the set of training examples
that belongs to the region 7; and to the class s;. These sets are called Region-Class
Sets, and notated by V;;. Furthermore, information about the elements that belong to a
defined class (set V'.S;), and that belong to a defined region (set V R ;) are stored. Last,
some information can be obtained from the set V. Note that the structure does not store
the whole region, class, and region-class sets, but only some features about them, as
their size, or their centroid, that will be defined below. For all the sets, its membership
function is given too.

Figure 1 shows the architecture used to keep all this information. Each of those
nodes stores the features about the sets that represent. This structure is dynamic, in the
sense that if any set is empty, the node is not created, solving some memory require-
ments in complex domains.

Pattern Set Class Sets

A rd ¥ BN

Vove | . |ve | e Ve
ALSIA Vi VlLA
3
i
g
B VR; | Vi Vi | | ML
oy
&
VRN Wi | [W L N

Region—Class Sets
Figurel. ENNC Architecture
From this architecture some important features are computed:

— regionss; is the number of regions which prototype class is s ;.

- expectation,,; is the number of patterns that any prototype r; of the class s; is
expected to correctly classify. This number is computed in a relative way, by the
relationship among the number of patterns and the number of regions of each class
Sj:

V55l
Tegionss,

erpectations; = (1)

— location,, is the location of the prototype ;.

— class,, is the class of the prototype r;.

— accuracy,, is the classification accuracy of the prototype. It is calculated as shown
in equation 2, being s; = class,,.

accuracy,, = Vi |
" VR

2

— apportation,, is a relationship among the number of patterns correctly classified
by this prototype and the number of patterns that it is suppose to classify:

[|Vis,
expectations;
2

3

apportation,, =

— quality,, is the quality of the prototype, calculated from equation 4. This value
is a relationship among the accuracy of the prototypes, and its contribution to the
classification of the whole input pattern set.

quality,, = maz (1, accuracy,, * apportation,,) 4

— neighbours(r;) is the set of regions that has a common border with the region r ;.

2.2 The Algorithm

The learning phase is an iterative process where the prototypes can execute several op-
erators, once the features defined in section 2.1 have been computed. This operators are
heuristics that allow the prototypes to change their location, to introduce new proto-
types, etc. The algorithm begins with an initialization where the classifier is composed
by only one prototype. After, the classifier evolves by executing, in a loop, all the de-
signed operators, described below. These operators take advantage of some information
gathered at the beginning of the loop.

Initialization One relevant feature of our method is the absolute elimination of initial
conditions. These initials conditions are usually summarized in three: the number of
prototypes, the initial set of prototypes and a smoothing parameter. The ENNC algo-
rithm allows to learn without those parameters, given that the initial number of proto-
types is always one, the initial location of that prototype is not relevant, and there are
no learning parameters.

Mutation Operator The goal of this operator is to label each prototype with the most
populate class in each region. Once the features are obtained, each prototype knows
the number of patterns of each class located in its region, so the prototype changes, if
needed, and becomes to the same class of the most abundant class of patterns in its
region.

This way to get the main class is typically used when unsupervised learning is ap-
plied to supervised classification. In these works, the algorithms typically generate a set
of clusters that takes into account only the distribution of the data. In a second phase, the
clusters are labelled to the most populate class in the cluster. However, in this work, the
supervision is included in each iteration of the algorithm, and not only in “a posteriori”
phase. The formulation of this operator is defined in equation 5.

Vri € C,class,; = arg; max ||V]| ®)

where ||V;;]| is the size of the set V;.

Reproduction Operator The goal of this operator is to introduce new prototypes in the
classifier. The insertion of new prototypes is a decision that is taken by each prototype,
in such a way that all of them contains in its region as much patterns as possible of
the same class. The regions with patterns belonging to different classes, can create new
regions containing the patterns of a different class to the class of the prototype.

Each prototype, r;, of the class s;, executes a roulette proportional to the number of
elements of the set V;;+ to which it represents. The possible results of the roulette are
two. On on hand, if the resulting set V;; is the set V;;, i.e. j = j', no reproduction is
executed. On the other hand, if the resulting set V;;: is not the set Vj;, i.e. j # j ' the
reproduction is executed, and a new region 7 is created to contain the patterns in Vj;/,
that is renamed to be Vy ;.

Fight Operator This operator provides the prototype the capability of getting patterns
from other regions. Formally, this operator allows a prototype, r;, to modify its sets
V;; from the sets V;/; of another prototype 7/, for i # 4’. This operator takes place in
several steps:

1. Choose the prototype r; against to fight proportionally to the difference between
its quality and the quality of a neighbor r;.
2. Decide whether to fight or not proportionally to the distance of their qualities:

Prighe(ri,ree) = |quality,, — quality,., | (6)

3. If prototype r; decides to fight with prototype 7/, there are two possibilities. Given
classy; = s;, and class;,, = sy:

— If s; # sy (cooperation). Both prototypes belongs to different classes. In this

case, the prototype r; will give to the prototype r; the patterns of the class s;.

— If s; = sy (competition). In this case, patterns can be transfered from set Vg,

to the set Vjs,, or vice versa, depending on who wins the fight. The amount

of patterns that are transferred depends on a probability proportional to the
qualities of both prototypes.

Move Operator The move operation implies to relocate each prototype in the best
expected place. So each prototype, r;, decides to move to the centroid of the set V;j,
being class,, = j, i.e. it takes as centroid the centroid of the set V;; of its class, as
shown in equation 7.

location,; = centroidy,,, 7

where s; = class,,;.
This operation based in the second step of Lloyd iteration allows to make a local
optimization of the classifier, increasing its performance.

Die Operator The probability for a prototype of being eliminated is 1 minus the double

of the quality, as defined in equation 8. In that case, successful prototypes will survive

with probability of 1, while useless prototypes with quality less than 0.5 might die. A
4

wide range of heuristics about how to reduce the number of prototypes in a classifier
can be found in the bibliography.

.\ _ |0, when quality,; > 0.5
Puie (ri) = { 1 — 2 x quality,,, when quality,, < 0.5 ®)

3 Experiments

This section shows the experiments performed over two different domains, where the
ENNC algorithm is compared with other classification algorithms, as C4.5 [Qui93],
decission rules [FW98], Naive Bayes [DH73], and IBK [AK91], for values of £ = 1
and k£ = 3, executed in WEKA [WFO00].

3.1 Spiral Data Set

Spiral data set is typically used in the bibliography as a challenge data set, where two
interlazed spirals must be correctly classified, as it is shown in figure 2. Examples in the
same spiral belong to the same class, and there are 500 examples in each spiral. From
the whole set, 900 examples was used for learning, and 100 for test.

I I
2000 -1500 —-1000 -500 0 500 1000 1500 201

class1 @ class2 +

Figure2. Spiral Data Set

Given that the ENNC algorithm has an important stochastic component, the ex-
periment has been executed 20 times, each of them of 300 iterations. The results are
summarized in Table 1 where, for each execution, the iteration when the winner classi-
fier was evolved is shown, as well as the number of prototypes of the classifier and the
classification error for training and test sets. The table shows that the 99% of success is
typically achieved on training, while success on test set ranges from 94% to 98%, what
means a maximum difference of 4 errors over the test set. The number of prototypes of
the classifiers achieved in each iteration is close to 80.

Iteration | Prototypes | Training (%)| Test (%)||Iteration| Prototypes| Training (%)| Test (%)
289 82 99,33 97,0 281 73 98,9 96,0
158 75 99,0 96,0 300 84 99,44 97,0
174 81 99,11 95,0 123 84 99,56 96,0
267 81 99,33 96,0 81 79 99,33 94,0
282 81 99,44 97,0 260 82 99,44 96,0
260 78 99,11 97,0 131 77 98,67 95,0
170 79 99,56 96,0 81 81 99,33 98,0
182 82 99,33 97,0 97 79 99,33 96,0
120 79 98,67 95,0 299 78 99,56 96,0
291 84 99,78 97,0 179 75 99,0 97,0

Tablel. Results of different executions of the ENNC algorithm over spiral data set.

Table 2 shows comparative results of different classifiers over this domain, showing
the best and the lowest results of the ENNC algorithm over the 20 executions. The
same training and test sets was used with all the classifier systems. Results for C4.5,
decission rules (PART) and Naive Bayes are poor, and they are far from the solutions
obtained by ENNC. However, IBK achieves the best results of a 100% of success as is
expected in a domain with the examples of different classes very separated, as shown
in Figure 2.

[C#.5[PART [Naive Bayes[IBK (k = D[IBK (k = 3)|ENNC (bes)[ENNC (worsD)]
[&2 56| 50 T00] 100] o8] 94]

Table2. Comparative results over the spiral data set.

Figure 3 shows the evolution of one execution of the ENNC algorithm, with the
number of prototypes and success obtained in each iteration over the training and the
test sets. Figure shows that in only 25 iterations, the number of prototypes grows up to
64, obtaining a success of the 91,34% over the training set, and of the 85% over the
test set. However, the number of prototypes still grows up to the range 70-80, when
the search of better solutions go on, obtaining the best solution in iteration 176, with a
success of 94% over the test set.

3.2 Uniformly Distributed Data

In this experiment, the ENNC algorithm has been executed over the data set shown in
the Figure 4, as defined in [Bur91]. As in that work, data set contains 2000 instances of
each class, using 500 for training ant 1500 for test.

As in previous case, the ENNC algorithm is executed 20 times, with a mamimum
length of 300 iterations. The algorithm achieves a solution of only 2 prototypes in 16
of the 20 executions, achieving a 98.6% iver the training and test sets. Other executions
achieve better results for classifiers with more prototypes, arriving up to the 98.73%
with 12 prototypes. Table 3 shows some comparative results with previous approaches,
as LVQ [Koh84] and LVQ-PNN [Bur91] of different sizes, and a different version of

6

100
90
80
70
60
50

40 :
30 :
20 - :

Success and Number of Prototypes

10 - -

0 1 1 1 1 1
0 50 100 150 200 250 30

Iterations

Training Test

Figure3. Evolution of one execution of the ENNC algorithm over spiral data set.

L .5-
Cuile

Figured4. Uniformly Distributed Data.

PNN [MTSO00] that automatically defines the number of neurons. Furthermore, C4.5,
PART, Naive Bayes and IBK (experimented with the default values defined in WEKA)
are compared too.

The table shows that the worst result obtained by ENNC for two prototypes (98.6%)
is very similar to the best solutions obtained with other different approaches, while the
best solution obtained, with a 98.93% of success, is better than the rest of solutions
reported.

4 CONCLUSIONS

The algorithm presented in this work is an evolutionary approach to solve the problem

of finding a set of prototypes that are able to correctly classify the examples of a domain,

following a 1-nearest neighbour approach. The main advantage of this method are, on
7

Algorithm Data Success
LVQ 10 prototypes [96.13
LVQ 100 prototypes|97.77
LVQ-PNN 10 Neurons ~ [96.99
LVQ-PNN 100 Neurons (98.17
PNN (Mao) |8 Neurons 98.85

C4.5 - 96.97
PART - 96.6
Naive Bayes |- 96.77
IBK k=1 98.7
IBK k=3 98.93

ENNC (best) (2 Prototypes [98.93
ENNC (worst) |2 Prototypes [98.6

Table3. Comparative results over Uniformly Distributed Data.

one hand, that it is able to achieve a high accuracy in most of the domains where it
has been tested, even compared with other techniques from the literature. On the other
hand, the achievement of these good results is done without the user defines the initial
conditions for learning.

References

[AK91] D. Aha and K. Kibler. Instance-based learning algorithms. Machine Learning, 6:37-66,
1991.

[Bur91] Pietro Burrascano. Learning vector quantization for the probabilistic neural network.
IEEE Transactions on Neural Networks, 2(4):458-461, July 1991.

[DH73] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John
Wiley And Sons, 1973.

[FW98] Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimiza-
tion. In Proceedings of the Fifteenth International Conference on Machine Learnin,
1998.

[Koh84] Teuvo Kohonen. Self-Organization and Associative Memory. Springer, Berlin, Heidel-
berg, 1984. 3rd ed. 1989.

[MTS00] K.Z.Mao, K.-C. Tan, and W. Ser. Probabilistic neural-network structure determination
for pattern classification. /EEE Transactions on Neural Networks, 11(4):1009-1016,
July 2000.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[WFO00] I. H. Witten and E. Frank. Data Mining. Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, 2000.

