165 research outputs found

    Topological Defects Coupling Smectic Modulations to Intra-unit-cell Nematicity in Cuprate

    Full text link
    We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi2Sr2CaCu2O8+{\delta}. By visualizing their spatial components separately, we identified 2\pi topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors

    Theory of the nodal nematic quantum phase transition in superconductors

    Get PDF
    We study the character of an Ising nematic quantum phase transition (QPT) deep inside a d-wave superconducting state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1/N expansion, the transition is continuous. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle (qp) peaks in the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qp's remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak disorder. Some possible implications for cuprate physics are also discussed.Comment: 9 page, 4 figures, an error in one of expressions corrected and a new author was added. New references and footnotes are added and this is the version to appear in PR

    Criticality in correlated quantum matter

    Full text link
    At quantum critical points (QCP) \cite{Pfeuty:1971,Young:1975,Hertz:1976,Chakravarty:1989,Millis:1993,Chubukov:1 994,Coleman:2005} there are quantum fluctuations on all length scales, from microscopic to macroscopic lengths, which, remarkably, can be observed at finite temperatures, the regime to which all experiments are necessarily confined. A fundamental question is how high in temperature can the effects of quantum criticality persist? That is, can physical observables be described in terms of universal scaling functions originating from the QCPs? Here we answer these questions by examining exact solutions of models of correlated systems and find that the temperature can be surprisingly high. As a powerful illustration of quantum criticality, we predict that the zero temperature superfluid density, ρs(0)\rho_{s}(0), and the transition temperature, TcT_{c}, of the cuprates are related by Tcρs(0)yT_{c}\propto\rho_{s}(0)^y, where the exponent yy is different at the two edges of the superconducting dome, signifying the respective QCPs. This relationship can be tested in high quality crystals.Comment: Final accepted version not including minor stylistic correction

    Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

    Full text link
    Dirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators [1, 2]. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in the periodic potential of interfering laser beams, a method which so far has only been applied to explore simple lattice structures [3, 4]. Here we report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other - a situation which has recently attracted considerable theoretical interest [5-9], but seems extremely challenging to observe in solids [10]. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide an avenue to explore many-body phases resulting from the interplay of complex lattice geometries with interactions [11, 12]

    Holographic GB gravity in arbitrary dimensions

    Full text link
    We study the properties of the holographic CFT dual to Gauss-Bonnet gravity in general D5D \ge 5 dimensions. We establish the AdS/CFT dictionary and in particular relate the couplings of the gravitational theory to the universal couplings arising in correlators of the stress tensor of the dual CFT. This allows us to examine constraints on the gravitational couplings by demanding consistency of the CFT. In particular, one can demand positive energy fluxes in scattering processes or the causal propagation of fluctuations. We also examine the holographic hydrodynamics, commenting on the shear viscosity as well as the relaxation time. The latter allows us to consider causality constraints arising from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection 3.3 and new appendix B on conformal tensor fields. Added comments on the relation between the central charge appearing in the two-point function and the "central charge" characterizing the entropy density in the discussion. References adde

    Depression and anxiety symptoms post-stroke/TIA:prevalence and associations in cross-sectional data from a regional stroke registry

    Get PDF
    BACKGROUND: Mood disorders are commonly seen in those with cerebrovascular disease. Literature to-date has tended to focus on depression and on patients with stroke, with relatively little known about post-stroke anxiety or mood disorder in those with transient ischaemic attack (TIA). We aimed to describe prevalence of depression and anxiety symptoms in stroke and TIA cohorts and to explore association with clinical and socio-demographic factors. METHODS: We used a city wide primary care stroke registry (Glasgow Local Enhanced Service for Stroke - LES). All community dwelling stroke-survivors were included. We described cross-sectional prevalence of depression and anxiety symptoms using the Hospital Anxiety and Depression Scale (HADS). Data on clinical and demographic details was collected and univariable and multivariable analyses performed to describe associations with HADS scores. We examined those with a diagnosis of 'stroke' and 'TIA' as separate cohorts. RESULTS: From 13,283 potentially eligible stroke patients in the registry, we had full HADS data on 4,079. Of the 3,584 potentially eligible TIA patients, we had full HADS data on 1,247 patients. Across the stroke cohort, 1181 (29%) had HADS anxiety scores suggestive of probable or possible anxiety; 993 (24%) for depression. For TIA patients, 361 (29%) had anxiety and 254 (21%) had depression. Independent predictors of both depression and anxiety symptoms were female sex, younger age and higher socioeconomic deprivation score (all p < 0.001). CONCLUSION: Using HADS, we found a high prevalence of anxiety and depression symptoms in a community-based cohort of patients with cerebrovascular disease

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    Homocysteine, Grey Matter and Cognitive Function in Adults with Cardiovascular Disease

    Get PDF
    Background: Elevated total plasma homocysteine (tHcy) has been associated with cognitive impairment, vascular disease and brain atrophy. Methods: We investigated 150 volunteers to determine if the association between high tHcy and cerebral grey matter volume and cognitive function is independent of cardiovascular disease. Results: Participants with high tHcy ($15 mmol/L) showed a widespread relative loss of grey matter compared with people with normal tHcy, although differences between the groups were minimal once the analyses were adjusted for age, gender, diabetes, hypertension, smoking and prevalent cardiovascular disease. Individuals with high tHcy had worse cognitive scores across a range of domains and less total grey matter volume, although these differences were not significant in the adjusted models. Conclusions: Our results suggest that the association between high tHcy and loss of cerebral grey matter volume and decline in cognitive function is largely explained by increasing age and cardiovascular diseases and indicate that th
    corecore